

Introduction

Science, Technology & Engineering, and Environmental Literacy & Sustainability (STEELS) Standards guide the study of the natural and human-made world through inquiry, problem-solving, critical thinking, and authentic exploration. This document displays a curriculum framework for High School Life Science. It is designed to focus curriculum and teaching, provide guidance for multiple approaches to curriculum development, encourage less reliance on textbooks as curriculum, and avoid activity-oriented teaching without focus/purpose.

Science Long Term Transfer Goals

In support of the Curriculum Framework, Long Term Transfer Goals (LTTG) provide the overarching practices that ground the foundation for a robust curriculum; thus, all curriculum should relate to one or more of the LTTGs detailed below – as they highlight the effective uses of understanding, knowledge, and skill that we seek in the long run; i.e., what we want students to be able to do when they confront new challenges – both in and outside of school.

Students will be able to engage as technological and engineering literate members of a global society, using their learning to:

- 1. Approach science as a reliable and tentative way of knowing and explaining the natural world and designed world.
- 2. Weigh evidence and use scientific approaches to ask questions, investigate, and make informed decisions.
- 3. Make and use observations to analyze relationships and patterns in order to explain phenomena, develop models, and make predictions.
- 4. Evaluate systems, in order to connect how form determines function and how any change to one component affects the entire system.
- 5. Explain how the natural and designed worlds are interrelated and the application of scientific knowledge and technology can have beneficial, detrimental, or unintended consequences.

Grade 9-12 Life Science

Structure and Function

Big Idea	Essential Question	Standard	Science and Engineering Practices	Disciplinary Core Ideas	Crosscutting Concepts	Vocabulary	2014 Assessment Anchors Eligible Content
Organisms have characteristic structures which enable functions and behaviors that allow them to grow, reproduce, and die.	How do the structures of organisms enable life's functions?	3.1.9-12.A Construct an explanation based on evidence for how the structure of DNA determines the structure of proteins, which carry out the essential functions of life through systems of specialized cells.	Constructing Explanations and Designing Solutions Construct an explanation based on valid and reliable evidence obtained from a variety of sources (including students' own investigations, models, theories, simulations, peer review) and the assumption that theories and laws that describe the natural world operate today as they did in the past and will continue to do so in the future.	Systems of specialized cells within organisms help them perform the essential functions of life. All cells contain genetic information in the form of DNA molecules. Genes are regions in the DNA that contain the instructions that code for the formation of proteins, which carry out most of the work of cells.	Structure and Function Investigating or designing new systems or structures requires a detailed examination of the properties of different materials, the structures of different components, and connections of components to reveal its function and/or solve a problem.	The Central Dogma DNA RNA gene protein DNA replication transcription translation	BIO.B.1.2.1 BIO.B.1.2.2 BIO.B.2.2.1 BIO.B.2.2.2
Organisms have characteristic	How do the structures of	3.1.9-12.B	Developing and Using Models	Multicellular organisms have a	Systems and System Models	cells	BIO.A.1.1.1

structures which enable functions and behaviors that allow them to grow, reproduce, and die.	organisms enable life's functions? How do the	Develop and use a model to illustrate the hierarchical organization of interacting systems that provide specific functions within multicellular organisms.	Develop and use a model based on evidence to illustrate the relationships between systems or between components of a system.	hierarchical structural organization, in which any one system is made up of numerous parts and is itself a component of the next level.	Models (e.g., physical, mathematical, computer models) can be used to simulate systems and interactions— including energy, matter, and information flows— within and between systems at different scales.	prokaryotic eukaryotic levels of biological organization	BIO.A.1.2.2 BIO.A.4.2.1
characteristic structures which enable functions and behaviors that allow them to grow, reproduce, and die.	structures of organisms enable life's functions?	Plan and conduct an investigation to provide evidence that feedback mechanisms maintain homeostasis.	Planning and carryingOut InvestigationsPlan and conduct an investigationindividually and collaboratively to produce data to serve as the basis for evidence, and in the design: decide on types, how much, and accuracy of data needed to produce reliable measurements and consider limitations	maintain a living system's internal conditions within certain limits and mediate behaviors, allowing it to remain alive and functional even as external conditions change within some range. Feedback mechanisms can encourage (through positive feedback) or discourage (negative feedback) what is	Change Feedback (negative or positive) can stabilize or destabilize a system.		BIO.A.4.1.1 BIO.A.4.1.2

							1				
			on the precision of the data (e.g., number of trials, cost, risk, time), and refine the design accordingly.	going on inside the living system.							
Growth and Development of Organisms											
Big Idea	Essential Question	Standard	Science and Engineering Practices	Disciplinary Core Ideas	Crosscutting Concepts	Vocabulary	Assessment Anchor Eligible Content				
The characteristic structures, functions and behaviors of organisms change in predictable ways as they progress through their life cycle.	How do organisms grow and develop?	3.1.9-12.D Use a model to illustrate the role of cellular division (mitosis) and differentiation in producing and maintaining complex organisms.	Developing and Using Models Use a model based on evidence to illustrate the relationships between systems or between components of a system.	In multicellular organisms individual cells grow and then divide via a process called mitosis, thereby allowing the organism to grow. The organism begins as a single cell (fertilized egg) that divides successively to produce many cells, with each parent cell passing identical genetic material (two variants of each chromosome pair) to both daughter cells. Cellular division and differentiation produce and maintain	Systems and System Models Models (e.g., physical, mathematical, computer models) can be used to simulate systems and interactions— including energy, matter, and information flows— within and between systems at different scales.	cell cycle interphase mitosis cytokinesis differentiation	BIO.B.1.1.1 BIO.B.1.1.2				

				a complex organism, composed of systems of tissues and organs that work together to meet the needs of the whole organism.			
Organization for Ma	tter and Energy Flow in	Organisms					
Big Idea	Essential Question	Standard	Science and Engineering Practices	Disciplinary Core Ideas	Crosscutting Concepts	Vocabulary	Assessment Anchors Eligible Content
The structures, functions, and behaviors of organisms allow them to obtain, use, transport, and remove the matter and energy needed to live.	How do organisms obtain and use the matter and energy they need to live and grow?	3.1.9-12.E Use a model to illustrate how photosynthesis transforms light energy into stored chemical energy.	Developing and Using Models Use a model based on evidence to illustrate the relationships between systems or between components of a system.	The process of photosynthesis converts light energy to stored chemical energy by converting carbon dioxide plus water into sugars plus released oxygen.	Energy and Matter Changes of energy and matter in a system can be described in terms of energy and matter flows into, out of, and within that system.	ADP/ATP chloroplast photosynthesis glucose	BIO.A.3.1.1 BIO.A.3.2.1 BIO.A.3.2.2
The structures, functions, and behaviors of organisms allow them to obtain, use, transport, and remove the matter and energy needed to live.	How do organisms obtain and use the matter and energy they need to live and grow?	3.1.9-12.F Construct and revise an explanation based on evidence for how carbon, hydrogen, and oxygen from sugar molecules may combine with other elements to form	Constructing Explanations and Designing Solutions Construct and revise an explanation based on valid and reliable evidence obtained from a variety of sources (including	The sugar molecules thus formed contain carbon, hydrogen, and oxygen: their hydrocarbon backbones are used to make amino acids and other carbon-based molecules that can be	Energy and Matter Changes of energy and matter in a system can be described in terms of energy and matter flows into,	organic molecules monomer polymer macromolecules	BIO.A.2.2.1 BIO.A.2.2.2 BIO.A.2.2.3 BIO.A.2.3.2 BIO.A.2.3.1

			1		
amino acids and/or	students' own	assembled into larger	out of, and within		
other large carbon-	investigations,	molecules (such as	that system.		
based molecules.	models, theories,	proteins or DNA),			
	simulations, peer	used for example to			
	review) and the	form new cells.			
	assumption that theories and laws that describe the natural world operate today as they did in the past and will continue to do so in the future.	As matter and energy flow through different organizational levels of living systems, chemical elements are recombined in different ways to form different products.			
ructures, How do organisms 3.1.9-12.G	Developing and Using	As matter and energy	Energy and Matter	ADP/ATP	BIO.A.2.3.1
Functures, ons, and iors of sms allow to obtain, ansport, and e the matter nergy neededHow do organisms obtain and use the matter and energy they need to live and grow?3.1.9-12.GUse a model to illustrate that cellula respiration is a chemical process whereby the bonds food molecules and oxygen molecules and broken and the bon in new compounds are formed resulting in a net transfer of energy.	 Models ar Use a model based on evidence to illustrate the relationships of between systems or between components of a system. 	As matter and energy flow through different organizational levels of living systems, chemical elements are recombined in different ways to form different products. As a result of these chemical reactions, energy is transferred from one system of interacting molecules to another. Cellular respiration is a	Energy and Matter Energy cannot be created or destroyed—it only moves between one place and another place, between objects and/or fields, or between systems.	ADP/ATP mitochondria cellular respiration	BIO.A.2.3.1 BIO.A.2.3.2 BIO.A.3.1.1 BIO.A.3.2.1 BIO.A.3.2.2
			interacting molecules to another. Cellular	interacting molecules to another. Cellular respiration is a	interacting molecules to another. Cellular respiration is a

	which	h the bonds of		
	food r	molecules and		
	oxyge	en molecules are		
	broke	en and new		
	comp	pounds are		
	forme	ed that can		
	transp	sport energy to		
	muscl	cles. Cellular		
	respira	ration also		
	releas	ises the energy		
	neede	led to maintain		
	body t	temperature		
	despit	ite ongoing		
	energ	gy transfer to the		
	surrou	ounding		
	enviro	ronment.		

Interdependent Relationships in Ecosystems

Big Idea	Essential Question	Standard	Science and Engineering Practices	Disciplinary Core Ideas	Crosscutting Concepts	Vocabulary	Assessment Anchors Eligible Content
Ecosystems are complex systems that include both living (biotic) and non-living (abiotic) components that interact with each other.	How do organisms interact with the living and nonliving environments to obtain matter and energy?	3.1.9-12.H Use mathematical representations to support claims for the cycling of matter and flow of energy among organisms in an ecosystem.	Using Mathematical and Computational Thinking Simple computational simulations are created and used based on mathematical models of basic assumptions.	Plants or algae form the lowest level of the food web. At each link upward in a food web, only a small fraction of the matter consumed at the lower level is transferred upward,	Energy and Matter Energy cannot be created or destroyed—it only moves between one place and another place, between objects and/or	food chains/webs trophic levels	BIO.B.4.1.1 BIO.B.4.1.2 BIO.B.4.2.1 BIO.B.4.2.2 BIO.B.4.2.3 BIO.B.4.2.4

	Use mathematical	to produce growth	fields, or between	
	representations of	and release energy in	systems.	
	phenomena or design	cellular respiration at		
	solutions to support	the higher level. Given		
	claims.	this inefficiency, there		
		are generally fewer		
		organisms at higher		
		levels of a food web.		
		Some matter reacts to		
		release energy for life		
		functions, some		
		matter is stored in		
		newly made		
		structures, and much		
		is discarded. The		
		chemical elements		
		that make up the		
		molecules of		
		organisms pass		
		through food webs		
		and into and out of		
		the atmosphere and		
		soil, and they are		
		combined and		
		recombined in		
		different ways. At		
		each link in an		
		ecosystem, matter		
		and energy are		
		conserved.		

Ecosystems are complex systems that include both living (biotic) and non-living (abiotic) components that interact with each other.	How do organisms interact with the living and nonliving environments to obtain matter and energy?	3.1.9-12.I Use mathematical and/or computational representations to support explanations of factors that affect carrying capacity of ecosystems at different scales.	Using Mathematics and Computational Thinking Simple computational simulations are created and used based on mathematical models of basic assumptions. Use mathematical and/or computational representations of phenomena or design solutions to support explanations.	Ecosystems have carrying capacities, which are limits to the numbers of organisms and populations they can support. These limits result from such factors as the availability of living and nonliving resources and from such challenges such as predation, competition, and disease. Organisms would have the capacity to produce populations of great size were it not for the fact that environments and resources are finite. This fundamental tension affects the abundance (number of individuals) of species in any given ecosystem.	Scale Proportion and Quantity The significance of a phenomenon is dependent on the scale, proportion, and quantity at which it occurs.	carrying capacity limiting factors ecosystem biotic abiotic	BIO.B.4.1.1 BIO.B.4.2.1 BIO.B.4.2.2 BIO.B.4.2.5
--	--	--	---	--	---	---	--

Cycles of Matter and	Cycles of Matter and Energy Transfer in Ecosystems										
Big Idea	Essential Question	Standard	Science and Engineering Practices	Disciplinary Core Ideas	Crosscutting Concepts	Vocabulary	Assessment Anchors Eligible Content				
The cycling of matter and the flow of energy within ecosystems occur through interactions among different organisms and between organisms and the physical environment.	How do matter and energy move through an ecosystem?	3.1.9-12.J Construct and revise an explanation based on evidence for the cycling of matter and flow of energy in aerobic and anaerobic conditions.	Constructing Explanations and Designing Solutions Construct and revise an explanation based on valid and reliable evidence obtained from a variety of sources (including students' own investigations, models, theories, simulations, peer review) and the assumption that theories and laws that describe the natural world operate today as they did in the past and will continue to do so in the future.	Photosynthesis and cellular respiration (including anaerobic processes) provide most of the energy for life processes.	Energy and Matter Energy drives the cycling of matter within and between systems.	anaerobic respiration photosynthesis cellular respiration	BIO.A.3.2.1 BIO.A.3.2.2				
The cycling of matter and the flow of energy within ecosystems	How do matter and energy move through an ecosystem?	3.1.9-12.K Develop a model to illustrate the role of	Developing and Using Models	Photosynthesis and cellular respiration are important components of the	Systems and System Models	carbon cycle photosynthesis	BIO.B.4.1.1 BIO.B.4.1.2				

					1	1	1
occur through interactions among different organisms and between organisms and the physical environment.		photosynthesis and cellular respiration in the cycling of carbon among the biosphere, atmosphere, hydrosphere, and geosphere.	Develop a model based on evidence to illustrate the relationships between systems or components of a system.	carbon cycle, in which carbon is exchanged among the biosphere, atmosphere, oceans, and geosphere through chemical, physical, geological, and biological processes.	Models (e.g., physical, mathematical, computer models) can be used to simulate systems and interactions— including energy, matter, and information flows— within and between systems at different scales.	cellular respiration	BIO.B.4.2.1 BIO.B.4.2.2 BIO.B.4.2.3
The cycling of matter and the flow of energy within ecosystems occur through interactions among different organisms and between organisms and the physical environment.	How do matter and energy move through an ecosystem?	3.1.9-12.L Use mathematical representations to support and revise explanations based on evidence about factors affecting biodiversity and populations in ecosystems of different scales.	Using Mathematics and Computational Thinking Simple computational simulations are created and used based on mathematical models of basic assumptions. Use mathematical representations of phenomena or design solutions to support and revise explanations.	Ecosystems have carrying capacities, which are limits to the numbers of organisms and populations they can support. These limits result from such factors as the availability of living and nonliving resources and from such challenges such as predation, competition, and disease. Organisms would have the capacity to produce	Scale Proportion and Quantity Using the concept of orders of magnitude allows one to understand how a model at one scale relates to a model at another scale.	carrying capacity limiting factors biodiversity biotic abiotic	BIO.B.4.1.1 BIO.B.4.1.2 BIO.B.4.2.1 BIO.B.4.2.2 BIO.B.4.2.5

Ecosystem Dynamics	s, Functioning, and Resi	lience		size were it not for the fact that environments and resources are finite. This fundamental tension affects the abundance (number of individuals) of species in any given ecosystem.			
Big Idea	Essential Question	Standard	Science and Engineering Practices	Disciplinary Core Ideas	Crosscutting Concepts	Vocabulary	Assessment Anchors Eligible Content
As the environment and populations of species change, there are resulting changes in ecosystems.	How do environmental changes impact ecosystems?	3.1.9-12.M Evaluate the claims, evidence, and reasoning that the complex interactions in ecosystems maintain relatively consistent numbers and types of organisms in stable conditions, but changing conditions	Engaging in Argument from Evidence Evaluate the claims, evidence, and reasoning behind currently accepted explanations or solutions to determine the merits of arguments.	A complex set of interactions within an ecosystem can keep its numbers and types of organisms relatively constant over long periods of time under stable conditions. If a modest biological or physical disturbance to an ecosystem occurs, it may return	Stability and Change Much of science deals with constructing explanations of how things change and how they remain stable.	Ecological relationships niche succession	BIO.B.4.2.4 BIO.B.4.2.5

As the	How do	3.1.9-12.N	Constructing Evaluations and	resilient), as opposed to becoming a very different ecosystem. Extreme fluctuations in conditions or the size of any population, however, can challenge the functioning of ecosystems in terms of resources and habitat availability. Moreover, anthronogeneic	Stability and	human disturbances	BIO.B.4.2.4
environment and populations of species change, there are resulting changes in ecosystems	environmental changes impact ecosystems?	Design, evaluate, and refine a solution for reducing the impacts of human activities on the environment and biodiversity.	Explanations and Designing Solutions Design, evaluate, and refine a solution to a complex real-world problem, based on scientific knowledge, student-generated sources of evidence, prioritized criteria, and trade off considerations.	anthropogenic changes (induced by human activity) in the environment— including habitat destruction, pollution, introduction of invasive species, overexploitation, and climate change—can disrupt an ecosystem and threaten the survival of some species.	Change Much of science deals with constructing explanations of how things change and how they remain stable.		BIO.B.4.2.5

Social Interactions a	Social Interactions and Group Behavior									
Big Idea	Essential Question	Standard	Science and Engineering Practices	Disciplinary Core Idea	Cross-Cutting Concepts	Vocabulary	Assessment Anchors Eligible Content			
Many species live in groups, increasing the chances of survival for individuals and their relatives.	How do organisms interact in groups so as to benefit individuals?	3.1.9-12.0 Evaluate the evidence for the role of group behavior on individual and species' chances to survive and reproduce.	Engaging in Argument from Evidence Engaging in argument from evidence in 9–12 builds on K–8 experiences and progresses to using appropriate and sufficient evidence and scientific reasoning to defend and critique claims and explanations about natural and designed worlds. Arguments may also come from current scientific or historical episodes in science. Evaluate the claims, evidence, and reasoning behind currently accepted explanations or solutions to determine the merits of arguments.	Group behavior has evolved because membership can increase the chances of survival for individuals and their genetic relatives.	Cause and Effect Empirical evidence is required to differentiate between cause and correlation and make claims about specific causes and effects.	group behaviors genetic relatedness	N/A			

Inheritance of Traits							
Big Idea	Essential Question	Standard	Science and Engineering Practices	Disciplinary Core Idea	Cross-Cutting Concepts	Vocabulary	Assessment Anchors Eligible Content
Offspring resemble, but are not identical to, their parents due to traits being passed from one generation to the next via genes.	How are the characteristics of one generation related to the previous generation?	3.1.9-12.P Ask questions to clarify relationships about the role of DNA and chromosomes in coding the instructions for characteristic traits passed from parents to offspring.	Asking Questions and Defining Problems Ask questions that arise from examining models or a theory to clarify relationships.	Each chromosome consists of a single very long DNA molecule, and each gene on the chromosome is a particular segment of that DNA. The instructions for forming species' characteristics are carried in DNA. All cells in an organism have the same genetic content, but the genes used (expressed) by the cell may be regulated in different ways. Not all DNA codes for a protein; some segments of DNA are involved in regulatory or structural functions, and some have no as- yet known function.	Cause and Effect Empirical evidence is required to differentiate between cause and correlation and make claims about specific causes and effects.	DNA gene allele chromosome gene Expression	BIO.B.1.2.2

Variation of Traits	Variation of Traits									
Big Idea	Essential Question	Standard	Science and Engineering Practices	Disciplinary Core Ideas	Crosscutting Concepts	Vocabulary	Assessment Anchors Eligible Content			
Variation among individuals of the same species can be explained by both genetic and environmental factors.	Why do individuals of the same species vary in how they look, function, and behave?	3.1.9-12.Q Make and defend a claim based on evidence that inheritable genetic variations may result from (1) new genetic combinations through meiosis, (2) viable errors occurring during replication, and/or (3) mutations caused by environmental factors.	Engaging in Argument from Evidence Make and defend a claim based on evidence about the natural world that reflects scientific knowledge, and student-generated evidence.	In sexual reproduction, chromosomes can sometimes swap sections during the process of meiosis (cell division), thereby creating new genetic combinations and thus more genetic variation. Although DNA replication is tightly regulated and remarkably accurate, errors do occur and result in mutations, which are also a source of genetic variation. Environmental factors can also cause mutations in genes, and viable mutations are inherited. Environmental factors also affect expression of traits, and hence affect the probability of occurrences of	Cause and Effect Empirical evidence is required to differentiate between cause and correlation and make claims about specific causes and effects.	meiosis mutation genetic variation	BIO.B.2.1.2 BIO.B.2.3.1 BIO.B.2.4.1			

				traits in a population. Thus the variation and distribution of traits observed depends on both genetic and environmental factors.			
Variation among individuals of the same species can be explained by both genetic and environmental factors.	Why do individuals of the same species vary in how they look, function, and behave?	3.1.9-12.R Apply concepts of statistics and probability to explain the variation and distribution of expressed traits in a population.	Analyzing and Interpreting Data Apply concepts of statistics and probability (including determining function fits to data, slope, intercept, and correlation coefficient for linear fits) to scientific and engineering questions and problems, using digital tools when feasible.	Environmental factors also affect expression of traits, and hence affect the probability of occurrences of traits in a population. Thus the variation and distribution of traits observed depends on both genetic and environmental factors.	Scale Proportion and Quantity Algebraic thinking is used to examine scientific data and predict the effect of a change in one variable on another (e.g., linear growth vs. exponential growth).	genotype phenotype inheritance	BIO.B.2.1.1 BIO.B.3.3.1
Evidence of Commo	n Ancestry and Diversity	1			1		
Big Idea	Essential Question	Standard	Science and Engineering Practices	Disciplinary Core Ideas	Crosscutting Concepts	Vocabulary	Assessment Anchors Eligible Content
Comparisons between species provides evidence that they evolved from common ancestors,	What evidence supports the relationship between species?	3.1.9-12.S Communicate scientific information that common ancestry and	Obtaining, Evaluating, and Communicating Information Communicate scientific information	Genetic information, like the fossil record, provides evidence of evolution. DNA sequences vary among species, but	Patterns Different patterns may be observed at each of the scales at which a system is	evolutionary evidence	BIO.B.3.2.1 BIO.B.3.3.1

explaining the	biological evolution	(e.g., about	there are many	studied and can	
similarities and	are supported by	phenomena and/or	overlaps; in fact, the	provide evidence for	
differences	multiple lines of	the process of	ongoing branching	causality in	
between species.	empirical evidence.	development and the	that produces	explanations of	
		design and	multiple lines of	phenomena.	
		performance of a	descent can be		
		proposed process or	inferred by comparing		
		system) in multiple	the DNA sequences of		
		formats (including	different organisms.		
		orally, graphically,	Such information is		
		textually, and	also derivable from		
		mathematically).	the similarities and		
			differences in amino		
			acid sequences and		
			from anatomical and		
			embryological		
			evidence.		

Natural Selection

Big Idea	Essential Question	Standard	Science and Engineering Practices	Disciplinary Core Idea	Cross-Cutting Concepts	Vocabulary	Assessment Anchors Eligible Content
In any environment, individuals with particular traits may be more likely than others to survive and produce offspring.	How does genetic variation among organisms affect survival and reproduction?	3.1.9-12.T Construct an explanation based on evidence that the process of evolution primarily results from four factors: (1) the potential for a species to increase in number, (2) the heritable genetic variation of	Constructing Explanations and Designing Solutions Construct an explanation based on valid and reliable evidence obtained from a variety of sources (including students' own investigations, models, theories,	Natural selection occurs only if there is both (1) variation in the genetic information between organisms in a population and (2) variation in the expression of that genetic information— that is, trait variation—that leads	Cause and Effect Empirical evidence is required to differentiate between cause and correlation and make claims about specific causes and effects.	natural selection biological fitness	BIO.B.3.1.1 BIO.B.3.3.1

		individuals in a species due to mutation and sexual reproduction, (3) competition for limited resources, and (4) the proliferation of those organisms that are better able to survive and reproduce in the environment.	simulations, peer review) and the assumption that theories and laws that describe the natural world operate today as they did in the past and will continue to do so in the future.	to differences in performance among individuals.			
In any environment individuals with particular traits may be more likely than others to survive and produce offspring.	How does genetic variation among organisms affect survival and reproduction?	3.1.9-12.U Apply concepts of statistics and probability to support explanations that organisms with an advantageous heritable trait tend to increase in proportion to organisms lacking this trait.	Analyzing and Interpreting Data Analyzing data in 9–12 builds on K–8 experiences and progresses to introducing more detailed statistical analysis, the comparison of data sets for consistency, and the use of models to generate and analyze data. Apply concepts of statistics and probability (including determining function fits to data, slope, intercept, and correlation coefficient	Natural selection occurs only if there is both (1) variation in the genetic information between organisms in a population and (2) variation in the expression of that genetic information— that is, trait variation—that leads to differences in performance among individuals. The traits that positively affect survival are more likely to be reproduced, and thus	Patterns Different patterns may be observed at each of the scales at which a system is studied and can provide evidence for causality in explanations of phenomena.	natural selection allele frequency	BIO.B.3.1.1 BIO.B.3.3.1

			for linear fits) to scientific and engineering questions and problems, using digital tools when feasible.	are more common in the population.			
Adaptation							
Big Idea	Essential Question	Standard	Science and Engineering Practices	Disciplinary Core Ideas	Crosscutting Concepts	Vocabulary	Assessment Anchors Eligible Content
When the environment changes, some individuals in a population may have traits that provide a reproductive advantage which over many generations can change the make- up of a population.	How does the environment influence populations of organisms over multiple generations?	3.1.9-12.V Create or revise a simulation to test a solution to mitigate the adverse impacts of human activity on biodiversity.	Using Mathematics and Computational Thinking Simple computational simulations are created and used based on mathematical models of basic assumptions. Create or revise a simulation of a phenomenon, designed device, process, or system.	Changes in the physical environment, whether naturally occurring or human induced, have thus contributed to the expansion of some species, the emergence of new distinct species as populations diverge under different conditions, and the decline–and sometimes the extinction–of some species.	Cause and Effect Empirical evidence is required to differentiate between cause and correlation and make claims about specific causes and effects.	biodiversity speciation biological extinction	BIO.B.4.2.4 BIO.B.4.2.5
When the environment changes, some individuals in a population may	How does the environment influence populations of organisms over	3.1.9-12.W Construct an explanation based on evidence for how natural selection	Constructing Explanations and Designing Solutions Construct an explanation based on	Natural selection leads to adaptation, that is, to a population dominated by organisms that are	Cause and Effect Empirical evidence is required to differentiate between cause and	adaptation natural selection	BIO.B.3.2.1 BIO.B.3.3.1

have traits that provide a reproductive advantage which over many generations can change the make- up of a population.	multiple generations?	leads to adaptation of populations.	valid and reliable evidence obtained from a variety of sources (including students' own investigations, models, theories, simulations, peer review) and the assumption that theories and laws that describe the natural world operate today as they did in the past and will continue to do so in the future.	anatomically, behaviorally, and physiologically well suited to survive and reproduce in a specific environment. That is, the differential survival and reproduction of organisms in a population that have an advantageous heritable trait leads to an increase in the proportion of individuals in future generations that have the trait and to a decrease in the proportion of individuals that do not.	correlation and make claims about specific causes and effects.		
When the environment changes, some individuals in a population may have traits that provide a reproductive advantage which over many generations can	How does the environment influence populations of organisms over multiple generations?	3.1.9-12.X Evaluate the evidence supporting claims that changes in environmental conditions may result in (1) increases in the number of individuals of some species, (2) the emergence of new species over time, and (3) the	Engaging in Argument from Evidence Arguments may also come from current or historical episodes in science. Evaluate the evidence behind currently accepted explanations or solutions to	Changes in the physical environment, whether naturally occurring or human induced, have thus contributed to the expansion of some species, the emergence of new distinct species as populations diverge under different	Cause and Effect Empirical evidence is required to differentiate between cause and correlation and make claims about specific causes and effects.	biodiversity speciation biological extinction	BIO.B.3.2.1 BIO.B.3.3.1

change the make-	extinction of other	determine the merits	conditions, and the	
up of a population.	species.	of arguments.	decline–and	
			sometimes the	
			extinction-of some	
			species.	
			Species become	
			extinct because they	
			can no longer survive	
			and reproduce in their	
			altered environment.	
			If members cannot	
			adjust to change that	
			is too fast or drastic,	
			the opportunity for	
			the species' evolution	
			is lost.	