

Additional Practice 8-4 **Use Models to Multiply Two**

Fractions

Another Look!

Graeme reserved $\frac{1}{2}$ of the seats in a restaurant for a dinner party. $\frac{1}{8}$ of those seats will be needed for family and the rest for his friends. What fraction of the restaurant's seats will be used by the family?

Draw a picture to represent $\frac{1}{8}$. Draw a rectangle that has lines dividing it into 8 equal parts. Shade 1 of the 8 parts.

Step 2

Then draw a horizontal line to show $\frac{1}{2}$. Shade $\frac{1}{2}$ of the whole rectangle. The purple overlap is the answer.

The two shadings overlap on $\frac{1}{16}$ of the whole rectangle.

 $\frac{1}{16}$ of the restaurant's seats will be used by Graeme's family.

In 1–3, find each product. Shade the model to help solve.

1.
$$\frac{4}{7} \times \frac{2}{3} = \frac{8}{21}$$

2.
$$\frac{1}{2} \times \frac{11}{12} \frac{11}{24}$$

3.
$$\frac{2}{5}$$
 of $\frac{1}{4}$ $\frac{1}{10}$

In 4-11, find each product. Use models to help you.

- 4. $\frac{3}{4} \times \frac{1}{8} = \frac{3}{32}$
- 5. $\frac{8}{9}$ of $\frac{9}{10}$ $\frac{4}{5}$
- **6.** $\frac{3}{7} \times \frac{2}{3} = \frac{2}{7}$
- 7. $\frac{1}{5} \times \frac{5}{6} + \frac{1}{6}$

- **8.** $\frac{1}{6}$ of $\frac{3}{4}$ $\frac{1}{8}$
- 9. $\frac{7}{8} \times \frac{1}{2} \frac{7}{16}$
- 10. $\frac{1}{12} \times \frac{3}{5} = \frac{1}{20}$
- 11. $\frac{1}{2}$ of $\frac{5}{9}$ $\frac{5}{18}$

12. Algebra What value of *n* makes the equation $n \times \frac{3}{4} = \frac{3}{16}$ true?

$$n=\frac{1}{4}$$

- 13. Use Structure $\frac{4}{9} \times \frac{7}{8} = \frac{7}{18}$. What is $\frac{7}{8} \times \frac{4}{9}$? How do you know without multiplying? $\frac{7}{8} \times \frac{4}{9} = \frac{7}{18}$. By the Commutative Property of Multiplication, the order of the factors does not change the product.
- **14.** The stained glass shown here is a hexagon. How can you use multiplication to find its perimeter?

You can multiply 6 by $\frac{1}{2}$ because the hexagon has 6 equal sides. $6 \times \frac{1}{2}$ ft = 3 ft.

15. Vincent found a recipe for banana macadamia nut bread that uses $\frac{3}{4}$ cup of macadamia nuts. If he only wants to make half the recipe, how many cups of macadamia nuts should he use?

 $\frac{3}{8}$ cup

16. Higher Order Thinking If $\frac{1}{2}$ is multiplied by $\frac{1}{2}$, will the product be greater than $\frac{1}{2}$? Explain.

No; Sample explanation: When multiplying two fractions less than one, the product is always smaller than either factor

17. In gym class, Matthew runs $\frac{3}{4}$ mile. His gym teacher runs 3 times that distance. How far does Matthew's gym teacher run?

 $2\frac{1}{4}$ miles

18. Titus had $\frac{1}{2}$ of a can of paint. He used $\frac{2}{3}$ of the paint to cover a tabletop. What fraction of a full can of paint did Titus use?

 $\frac{1}{3}$ can

Assessment Practice

19. Nola made the model to show multiplying a fraction by a fraction. Which multiplication sentence does the model show?

©
$$\frac{1}{3} \times \frac{1}{5} = \frac{1}{15}$$

