

accIntroduction

Science, Technology & Engineering, and Environmental Literacy & Sustainability (STEELS) Standards guide the study of the natural and human-made world through inquiry, problem-solving, critical thinking, and authentic exploration. This document displays a curriculum framework for Middle School Life Science. It is designed to focus curriculum and teaching, provide guidance for multiple approaches to curriculum development, encourage less reliance on textbooks as curriculum, and avoid activity-oriented teaching without focus/purpose.

Science Long Term Transfer Goals

In support of the Curriculum Framework, Long Term Transfer Goals (LTTG) provide the overarching practices that ground the foundation for a robust curriculum; thus, all curriculum should relate to one or more of the LTTGs detailed below – as they highlight the effective uses of understanding, knowledge, and skill that we seek in the long run; i.e., what we want students to be able to do when they confront new challenges – both in and outside of school.

Students will be able to engage as technological and engineering literate members of a global society, using their learning to:

- 1. Approach science as a reliable and tentative way of knowing and explaining the natural world and designed world.
- 2. Weigh evidence and use scientific approaches to ask questions, investigate, and make informed decisions.
- 3. Make and use observations to analyze relationships and patterns in order to explain phenomena, develop models, and make predictions.
- 4. Evaluate systems, in order to connect how form determines function and how any change to one component affects the entire system.
- 5. Explain how the natural and designed worlds are interrelated and the application of scientific knowledge and technology can have beneficial, detrimental, or unintended consequences.

August 2024 1 | P a g e

Grade 6-8 Life Science

Structure and Function **Science and Engineering** Standard **Disciplinary Core Idea** Vocabulary Big Idea **Essential Question Crosscutting Concepts Practices** Organisms have 3.1.6-8.A **Planning and Carrying Out** How do the structures of All living things are made up Scale, Proportion, and organism characteristic structures organisms enable life's Conduct an investigation to Investigations of cells, which is the smallest cells Quantity that enable functions and functions? provide evidence that living Conduct an investigation unit that can be said to be Phenomena that can be unicellular behaviors that allow them things are made of cells, to produce data to serve alive. An organism may observed at one scale may multicellular either one cell or many consist of one single cell to grow, reproduce, and as the basis for evidence not be observable at phenomena die. different numbers and types that meet the goals of an (unicellular) or many another scale. scale of cells. investigation. different numbers and types of cells (multicellular). Organisms have 3.1.6-8.B **Developing and Using** Within cells, special cell structures How do the structures of Structure and Function characteristic structures organisms enable life's Develop and use a model to structures are responsible functions of cells Models Complex and microscopic that enable functions and functions? describe the function of a Develop and use a model for particular functions, and structures and systems can membrane behaviors that allow them cell as a whole and the ways to describe phenomena. the cell membrane forms the be visualized, modeled, and models that parts of cells contribute to grow, reproduce, and boundary that controls what used to describe how their systems die. to the function. enters and leaves the cell. function depends on the relationships relationships among its parts, therefore complex natural structures/systems can be analyzed to determine how they function. Organisms have How do the structures of 3.1.6-8.C **Engaging in Argument** In multicellular organisms, System and System Models multicellular organism from Evidence the body is a system of tissue characteristic structures organisms enable life's Use arguments supported Systems may interact with that enable functions and functions? by evidence for how the multiple interacting Use an oral and written other systems; they may organ behaviors that allow them body is a system of argument supported by subsystems. These have sub-systems and be a body systems to grow, reproduce, and interacting subsystems evidence to support or subsystems are groups of part of larger complex specialized cells die. composed of groups of cells. cells that work together to systems. systems and sub-systems

August 2024 2 | Page

			refute an explanation or a model for a phenomenon	form tissues and organs that are specialized for particular body functions.		system models
Growth and Developme	ent of Organisms					
Big Idea	Essential Question	Standard	Science and Engineering Practices	Disciplinary Core Idea	Crosscutting Concepts	Vocabulary
The characteristic structures, functions, and behaviors of organisms change in predictable ways as they progress from birth to old age. (the life cycle)	How do organisms grow and develop?	3.1.6-8.D Use arguments based on empirical evidence and scientific reasoning to support an explanation for how characteristic animal behaviors and specialized plant structures affect the probability of successful reproduction of animals and plants, respectively.	Engaging in Argument from Evidence Use an oral and written argument supported by empirical evidence and scientific reasoning to support or refute an explanation or a model for a phenomenon or a solution to a problem.	Animals engage in characteristic behaviors that increase the odds of reproduction. Plants reproduce in a variety of ways, sometimes depending on animal behavior and specialized features for reproduction.	Cause and Effect Phenomena may have more than one cause, and some cause and effect relationships in systems can only be described using probability.	asexual sexual reproduction probability cause and effect structures
The characteristic structures, functions, and behaviors of organisms change in predictable ways as they progress from birth to old age. (through the life cycle)	How do organisms grow and develop?	3.1.6-8.E Construct a scientific explanation based on evidence for how environmental and genetic factors influence the growth of organisms.	Constructing Explanations and Designing Solutions Construct a scientific explanation based on valid and reliable evidence obtained from sources (including the students' own experiments) and the assumption that theories and laws that describe the natural world operate today as they did in the past and will continue to do so in the future.	Genetic factors as well as local conditions affect the growth of the adult plant.	Cause and Effect Phenomena may have more than one cause, and some cause and effect relationships in systems can only be described using probability	environmental factors genetic factors local conditions scientific explanation organisms

August 2024 3 | Page

Big Idea	Essential Question	Standard	Science and Engineering Practices	Disciplinary Core Idea	Crosscutting Concepts	Vocabulary
The structures, functions,	How do organisms obtain	3.1.6-8.F	Constructing Explanations	Plants, algae (including	Energy and Matter	photosynthesis
and behaviors of organisms	and use the matter and	Construct a scientific	and Designing Solutions	phytoplankton), and many	Within a natural system, the	natural system
allow them to obtain, use,	energy they need to live	explanation based on	Construct a scientific	microorganisms use the	transfer of energy drives	microorganisms
ransport, and remove the	and grow?	evidence for the role of	explanation based on valid	energy from light to make	the motion and/or cycling	macroorganisms
natter and energy needed		photosynthesis in the	and reliable evidence	sugars (food) from carbon	of matter.	chemical reaction
o live.		cycling of matter and flow of	obtained from sources	dioxide from the atmosphere		flow of energy
		energy into and out of	(including the students'	and water through the		cycling of matter
		organisms.	own experiments) and the	process of photosynthesis,		transfer of energy
			assumption that theories	which also releases oxygen.		sugars
			and laws that describe the	These sugars can be used		carbon dioxide
			natural world operate	immediately or stored for		oxygen
			today as they did in the	growth or later use.		inputs
			past and will continue to			outputs
			do so in the future.	The chemical reaction by		
				which plants produce		
				complex food molecules		
				(sugars) requires energy		
				input (i.e., from sunlight) to		
				occur. In this reaction,		
				carbon dioxide and water		
				combine to form carbon-		
				based organic molecules and		
				release oxygen. (secondary)		
he structures, functions,	How do organisms obtain	3.1.6-8.G	Developing and Using	Within individual organisms,	Energy and Matter	cellular respiration
and behaviors of organisms	and use the matter and	Develop a model to describe	Models	food moves through a series	Matter is conserved	chemical reaction
llow them to obtain, use,	energy they need to live	how food is rearranged	Develop a model to	of chemical reactions in	because atoms are	conservation of matte
ransport, and remove the	and grow?	through chemical reactions	describe unobservable	which it is broken down and	conserved in physical and	cycle
natter and energy needed		forming new molecules that	mechanisms.	rearranged to form new	chemical processes.	models
o live.		support growth and/or		molecules, to support		mechanisms
		release energy as this		growth, or to release energy.		molecules
		matter moves through an				physical processes
		organism.		Cellular respiration in plants		chemical processes
				and animals involve chemical		

August 2024 4 | Page

				reactions with oxygen that release stored energy. In these processes, complex molecules containing carbon react with oxygen to produce carbon dioxide and other		
Information Processing				materials. (secondary)		
Big Idea	Essential Question	Standard	Science and Engineering Practices	Disciplinary Core Idea	Crosscutting Concepts	Vocabulary
Animals have external and internal sensory receptors that detect different kinds of information that then gets processed by the brain.	How do organisms detect, process, and use information about the environment?	3.1.6-8.H Gather and synthesize information about how sensory receptors respond to stimuli by sending messages to the brain for immediate behavior or storage as memories.	Obtaining, Evaluating, and Communicating Information Gather, read, and synthesize information from multiple appropriate sources and assess the credibility, accuracy, and possible bias of each publication and methods used, and describe how they are supported or not supported by evidence.	Each sense receptor responds to different inputs (electromagnetic, mechanical, chemical), transmitting them as signals that travel along nerve cells to the brain. The signals are then processed in the brain, resulting in immediate behaviors or memories.	Cause and Effect Cause and effect relationships may be used to predict phenomena in natural systems.	electromagnetic mechanical chemical neurons stimuli response natural systems receptor nerve cells
Interdependent Relatio	nships in Ecosystems		-			
Big Idea	Essential Question	Standard	Science and Engineering Practices	Disciplinary Core Idea	Crosscutting Concepts	Vocabulary
Ecosystems are complex systems that include both living (biotic) and non-living (abiotic) components that interact with each other.	How do organisms interact with the living and nonliving environments to obtain matter and energy?	3.1.6-8.I Analyze and interpret data to provide evidence for the effects of resource availability on organisms and populations of organisms in an ecosystem.	Analyzing and Interpreting Data Analyze and interpret data to provide evidence for phenomena.	Organisms, and populations of organisms, are dependent on their environmental interactions both with other living things and with nonliving factors. In any ecosystem, organisms and populations with similar	Cause and Effect Cause and effect relationships may be used to predict phenomena in natural or designed systems.	organisms populations of organisms environmental interactions nonliving factors biotic abiotic ecosystem

August 2024 5 | Page

				roquiroments for food	I	racauraas
				requirements for food,		resources
				water, oxygen, or other		cause and effect
				resources may compete with		limiting factors
				each other for limited		competition
				resources, access to which		cause and effect
				consequently constrains		
				their growth and		
				reproduction.		
				Growth of organisms and		
				population increases are		
				limited by access to		
				resources.		
Ecosystems are complex	How do organisms	3.1.6-8.J	Constructing Explanations	Similarly, predatory	Patterns	ecosystems
systems that include both	interact with the living	Construct an explanation	and Designing Solutions	interactions may reduce the	Patterns can be used to	qualitative relationship
living (biotic) and non-living	and nonliving	that predicts patterns of	Construct an explanation	number of organisms or	identify cause and effect	quantitative relationship
(abiotic) components that	environments to obtain	interactions among	that includes qualitative or	eliminate whole populations	relationships.	populations
interact with each other.	matter and energy?	organisms across multiple	quantitative relationships	of organisms. Mutually		competition
		ecosystems.	between variables that	beneficial interactions, in		predation
			predict phenomena.	contrast, may become so		living and nonliving
				interdependent that each		mutually beneficial
				organism requires the other		variables
				for survival. Although the		
				species involved in these		
				competitive, predatory, and		
				mutually beneficial		
				interactions vary across		
				ecosystems, the patterns of		
				interactions of organisms		
				with their environments,		
				both living and nonliving, are		
				shared.		

August 2024 6 | Page

Cycles of Matter and Er	nergy Transfer in Ecosys	tems				
Big Idea	Essential Question	Standard	Science and Engineering Practices	Disciplinary Core Idea	Crosscutting Concepts	Vocabulary
The cycling of matter and	How do matter and	3.1.6-8.K	Developing and Using	Food webs are models that	Energy and Matter	transfer of energy
he flow of energy within	energy move through an	Develop a model to describe	Models	demonstrate how matter	The transfer of energy can	energy flow
cosystems occur through	ecosystem?	the cycling of matter and	Develop a model to	and energy is transferred	be tracked as energy flows	natural system
nteractions among		flow of energy among living	describe phenomena.	between producers,	through a natural system.	food webs
ifferent organisms and		and nonliving parts of an		consumers, and		models
etween organisms and the		ecosystem.		decomposers as the three		ecosystem
hysical environment.				groups interact within an		producers
				ecosystem. Transfers of		consumers
				matter into and out of the		decomposers
				physical environment occur		physical environment
				at every level. Decomposers		
				recycle nutrients from dead		
				plant or animal matter back		
				to the soil in terrestrial		
				environments or to the		
				water in aquatic		
				environments. The atoms		
				that make up the organisms		
				in an ecosystem are cycled		
				repeatedly between the		
				living and nonliving parts of		
				the ecosystem.		
Ecosystem Dynamics, F	unctioning, and Resilier	ice				
Big Idea	Essential Question	Standard	Science and Engineering Practices	Disciplinary Core Idea	Crosscutting Concepts	Vocabulary
As the environment and	How does a change in	3.1.6-8.L	Engaging in Argument	Ecosystems are dynamic in	Stability and Change	systems
opulations of species	environment impact	Construct an argument	from Evidence	nature; their characteristics	Small changes in one part of	ecosystem
hange, there are resulting	ecosystems?	supported by empirical	Construct an oral and	can vary over time.	a system might cause large	biological components
hanges in ecosystems.		evidence that changes to	written argument	Disruptions to any physical	changes in another part.	empirical evidence
		physical or biological	supported by empirical	or biological component of		scientific reasoning
		components of an	evidence and scientific	an ecosystem can lead to		population
			reasoning to support or	shifts in all its populations.		disruptions

August 2024 7 | Page

		ecosystem affect populations.	refute an explanation or a model for a phenomenon or a solution to a problem.			stability change
Inheritance of Traits						
Big Idea	Essential Question	Standard	Science and Engineering Practices	Disciplinary Core Idea	Crosscutting Concepts	Vocabulary
Offspring resemble, but are not identical to, their parents due to traits being passed from one generation to the next via genes.	How are the characteristics of one generation related to the previous generation?	3.1.6-8.M Develop and use a model to describe why structural changes to genes (mutations) located on chromosomes may affect proteins and may result in harmful, beneficial, or neutral effects to the structure and function of the organism.	Developing and Using Models Develop and use a model to describe phenomena.	Genes are located in the chromosomes of cells, with each chromosome pair containing two variants of each of many distinct genes. Each distinct gene chiefly controls the production of specific proteins, which in turn affects the traits of the individual. Changes (mutations) to genes can result in changes to proteins, which can affect the structures and functions of the organism and thereby change traits. In addition to variations that arise from sexual reproduction, genetic information can be altered because of mutations. Though rare, mutations may result in changes to the structure and function of proteins. Some changes are beneficial, others harmful, and some neutral to the organism.	Structure and Function Complex and microscopic structures and systems can be visualized, modeled, and used to describe how their function depends on the shapes, composition, and relationships among its parts, therefore complex natural structures/systems	cells genes mutations chromosomes proteins structure and function traits sexual reproduction microscopic structures systems models

August 2024 8 | Page

Variation of Traits	Variation of Traits								
Big Idea	Essential Question	Standard	Science and Engineering Practices	Disciplinary Core Idea	Crosscutting Concepts	Vocabulary			
Variation among individuals	Why do individuals of the	3.1.6-8.N	Developing and Using	Organisms reproduce, either	Cause and Effect	asexual reproduction			
of the same species can be	same species vary in how	Develop and use a model to	Models	sexually or asexually, and	Cause and effect	sexual reproduction			
explained by both genetic	they look, function, and	describe why asexual	Develop and use a model	transfer their genetic	relationships may be	offspring			
and environmental factors.	behave?	reproduction results in	to describe phenomena.	information to their	used to predict	genetic variation			
		offspring with identical		offspring. (secondary)	phenomena in natural	genetic information			
		genetic information and			systems.	organisms			
		sexual reproduction results		Variations of inherited traits		random			
		in offspring with genetic		between parent and		allele			
		variation.		offspring arise from genetic		gene			
				differences that result from		natural systems			
				the subset of chromosomes		cause and effect			
				(and therefore genes)		predict			
				inherited.					
				In sexually reproducing					
				organisms, each parent					
				contributes half of the genes					
				acquired (at random) by the					
				offspring. Individuals have					
				two of each chromosome					
				and hence two alleles of					
				each gene, one acquired					
				from each parent. These					
				versions may be identical or					
				may differ from each other.					
Evidence of Common A	ncestry and Diversity								
Big Idea	Essential Question	Standard	Science and Engineering Practices	Disciplinary Core Idea	Crosscutting Concepts	Vocabulary			
Comparisons between	What evidence supports	3.1.6-8.0	Analyzing and Interpreting	The collection of fossils and	Patterns	fossil			
species provides evidence	that different species are	Analyze and interpret data	Data	their placement in	Graphs, charts, and images	diversity			
that species evolved from	related?	for patterns in the fossil		chronological order (e.g.,	can be used to identify	chronological			
common ancestors which		record that document the		through the location of the	patterns in data.	sedimentary layers			

August 2024 9 | Page

Analyze and interpret data sedimentary layers in which

radioactive dating

existence, diversity,

explains the similarities and

explains the similarities and		chiotomocy diversity,	, mary ze and meer pree data	seamentary layers in winem		radioactive dating
differences between		extinction, and change of	to determine similarities	they are found or through		extinction
species.		life forms throughout the	and differences in findings.	radioactive dating) is known		change of life forms
		history of life on Earth under		as the fossil record. It		patterns
		the assumption that natural		documents the existence,		
		laws operate today as in the		diversity, extinction, and		
		past.		change of many life forms		
				throughout the history of life		
				on Earth.		
Comparisons between	What evidence supports	3.1.6-8.P	Constructing Explanations	Anatomical similarities and	Patterns	Fossil
species provides evidence	that different species are	Apply scientific ideas to	and Designing Solutions	differences between various	Patterns can be used to	organisms
that species evolved from	related?	construct an explanation for	Apply scientific ideas to	organisms living today and	identify cause and effect	evolutionary relationships
common ancestors which		anatomical similarities and	construct an explanation	between them and	relationships.	anatomical
explains the similarities and		differences among modern	for real-world phenomena,	organisms in the fossil		infer relationships
differences between		organisms and between	examples, or events.	record, enable the		patterns
species.		modern and fossil organisms		reconstruction of		
		to infer evolutionary		evolutionary history and the		
		relationships.		inference of lines of		
				evolutionary descent.		
Comparisons between	What evidence supports	3.1.6-8.Q	Analyzing and Interpreting	Comparison of the	Patterns	embryo
species provides evidence	that different species are	Analyze displays of pictorial	Data	embryological development	Graphs, charts, and images	embryological
that species evolved from	related?	data to compare patterns of	Analyze displays of data to	of different species also	can be used to identify	development
common ancestors which		similarities in anatomical	identify linear and	reveals similarities that show	patterns in data.	anatomy
explains the similarities and		structures across multiple	nonlinear relationships.	relationships not evident in		species
differences between		species to identify		the fully-formed anatomy.		linear relationships
species.		relationships not evident in				nonlinear relationships
		the fully formed anatomy.				patterns
Natural Selection						
Big Idea	Essential Question	Standard	Science and Engineering Practices	Disciplinary Core Idea	Crosscutting Concepts	Vocabulary
In any environment	How does genetic	3.1.6-8.R	Obtaining, Evaluating, and	In artificial selection, humans	Cause and Effect	inheritance
individuals with particular	variation among	Gather and synthesize	Communicating	have the capacity to	Phenomena may have more	traits
traits may be more likely	organisms affect survival	information about the	Information	influence certain	than one cause, and some	bias
than others to survive and	and reproduction?	technologies that have	Gather, read, and	characteristics of organisms	cause and effect	technologies
produce offspring.		changed the way humans	synthesize information	by selective breeding. One	relationships in systems can	inheritance
			from multiple appropriate	can choose desired parental		organism

August 2024 10 | P a g e

		influence the inheritance of desired traits in organisms.	sources and assess the credibility, accuracy, and possible bias of each publication and methods used, and describe how they are supported or not supported by evidence.	traits determined by genes, which are then passed onto offspring.	only be described using probability.	genetic variation selective breeding genes offspring relationships in systems probability genetic engineering advantageous trait disadvantageous trait cause and effect
In any environment individuals with particular traits may be more likely than others to survive and produce offspring	How does genetic variation among organisms affect survival and reproduction?	3.1.6-8.S Construct an explanation based on evidence that describes how genetic variations of traits in a population increase some individuals' probability of surviving and reproducing in a specific environment.	Obtaining, Evaluating, and Communicating Information Construct an explanation that includes qualitative or quantitative relationships between variables that describe phenomena.	Natural selection leads to the predominance of certain traits in a population, and the suppression of others.	Cause and Effect Phenomena may have more than one cause, and some cause and effect relationships in systems can only be described using probability.	traits genetic variations population natural selection systems survival probability variables cause and effect relationships
Adaptation						·
Big Idea	Essential Question	Standard	Science and Engineering Practices	Disciplinary Core Idea	Crosscutting Concepts	Vocabulary
When the environment changes, some individuals in a population may have traits that provide a reproductive advantage which over many generations can change the make-up of a population.	How does the environment influence populations of organisms over multiple generations?	3.1.6-8.T Use mathematical representations to support explanations of how natural selection may lead to increases and decreases of specific traits in populations over time.	Using Mathematics and Computational Thinking Use mathematical representations to support scientific conclusions and design solutions.	Adaptation by natural selection acting over generations is one important process by which species change over time in response to changes in environmental conditions. Traits that support successful survival and reproduction in the new environment become more common; those that do not become less common. Thus, the	Cause and Effect Phenomena may have more than one cause, and some cause and effect relationships in systems can only be described using probability.	adaptation natural selection cause and effect species adaptation generation environmental conditions probability traits distribution of traits

August 2024 11 | Page

				distribution of traits in a					
Biodiversity and Humans population changes.									
Big Idea	Essential Question	Standard	Science and Engineering Practices	Disciplinary Core Idea	Crosscutting Concepts	Vocabulary			
Humans depend on biodiversity, the variety of species and ecosystems, for resources. Human actions can impact the diversity of species.	How do humans affect biodiversity, and how does it affect humans? Mutually impact?	3.1.6-8.U Evaluate competing design solutions for maintaining biodiversity and ecosystem services.	Engaging in Argument from Evidence Evaluate competing design solutions based on jointly developed and agreed upon design criteria.	Changes in biodiversity can influence humans' resources, such as food, energy, and medicines, as well as ecosystem services that humans rely on—for example, water purification and recycling. (secondary)	Stability and Change Small changes in one part of a system might cause large changes in another part.	biodiversity design solutions ecosystem resources systems stability and change			

August 2024 12 | P a g e