

Introduction

Science, Technology & Engineering, and Environmental Literacy & Sustainability (STEELS) Standards guide the study of the natural and human-made world through inquiry, problem-solving, critical thinking, and authentic exploration. This document displays a curriculum framework for High School Physical Science. It is designed to focus curriculum and teaching, provide guidance for multiple approaches to curriculum development, encourage less reliance on textbooks as curriculum, and avoid activity-oriented teaching without focus/purpose.

Science Long Term Transfer Goals

In support of the Curriculum Framework, Long Term Transfer Goals (LTTG) provide the overarching practices that ground the foundation for a robust curriculum; thus, all curriculum should relate to one or more of the LTTGs detailed below – as they highlight the effective uses of understanding, knowledge, and skill that we seek in the long run; i.e., what we want students to be able to do when they confront new challenges – both in and outside of school.

Students will be able to engage as technological and engineering literate members of a global society, using their learning to:

- 1. Approach science as a reliable and tentative way of knowing and explaining the natural world and designed world.
- 2. Weigh evidence and use scientific approaches to ask questions, investigate, and make informed decisions.
- 3. Make and use observations to analyze relationships and patterns in order to explain phenomena, develop models, and make predictions.
- 4. Evaluate systems, in order to connect how form determines function and how any change to one component affects the entire system.
- 5. Explain how the natural and designed worlds are interrelated and the application of scientific knowledge and technology can have beneficial, detrimental, or unintended consequences.

Grade 9-12 Physical Science

Structure and Properties of Matter								
Big Idea	Essential Question	Standard	Science and Engineering Practices	Disciplinary Core Idea	Crosscutting Concepts	Vocabulary		
Big Idea All forms of matter exist as a result of the combination or rearrangement of atoms.	Essential Question How do particles combine to form the variety of matter one observes?	Standard 3.2.9-12.A Use the periodic table as a model to predict the relative properties of elements based on the patterns of electrons in the outermost energy level of atoms.	Practices Practices Developing and Using Models Use a model to predict the relationships between systems or between components of a system.	Disciplinary Core Idea Each atom has a charged substructure consisting of a nucleus, which is made of protons and neutrons, surrounded by electrons. The periodic table orders elements horizontally by the number of protons in the atom's nucleus and places those with similar chemical properties in columns. The repeating patterns of this table reflect patterns of outer electron states.	Crosscutting Concepts Patterns Different patterns may be observed at each of the scales at which a system is studied and can provide evidence for causality in explanations of phenomena.	Vocabularyprotonneutronelectronatomic numbermass numberisotopeelectron affinityshielding effectelectronegativityatomic radiusionization energyvalence electronselectron shellsoctet ruleorbital diagramselectron configurationorbitals sublevelsperiodic tablepatterns		

All forms of matter exist as a	How do particles combine	3.2.9-12.B	Planning and Carrying Out	The structure and	Patterns	intermolecular forces
result of the combination or	to form the variety of	Plan and conduct an	Investigations	interactions of matter at	Different patterns may be	ions
rearrangement of atoms.	matter one observes?	investigation to gather	Plan and conduct an	the bulk scale are	observed at each of the	physical properties
5		evidence to compare the	investigation individually	determined by electrical	scales at which a system is	coulomb's
		structure of substances	and collaboratively to	forces within and between	studied and can provide	law
		at the bulk scale to infer	produce data to serve as	atoms.	evidence for causality in	Lewis dot structures
		the strength of electrical	the basis for evidence, and		explanations of phenomena.	lattice energy
		forces between particles.	in the design: decide on	Attraction and repulsion		patterns
			types, how much, and	between electric charges at		
			accuracy of data needed to	the atomic scale explain the		
			produce reliable	structure, properties, and		
			measurements and	transformations of matter,		
			consider limitations on the	as well as the contact forces		
			precision of the data (e.g.,	between material objects.		
			number of trials, cost, risk,			
			time), and refine the			
			design accordingly.			
All forms of matter exist as a	How do particles combine	3.2.9-12.C	Constructing Explanations	The periodic table orders	Patterns	reactants
result of the combination or	to form the variety of	Construct and revise an	and Designing Solutions	elements horizontally by	Different patterns may be	products
rearrangement of atoms.	matter one observes?	explanation for the	Construct and revise an	the number of protons in	observed at each of the	types of bonds
		outcome of a simple	explanation based on valid	the atom's nucleus and	scales at which a system is	types of reactions
		chemical reaction based	and reliable evidence	places those with similar	studied and can provide	reactivity
		on the outermost	obtained from a variety of	chemical properties in	evidence for causality in	patterns
		electron states of atoms,	sources (including	columns. The repeating	explanations of phenomena.	
		trends in the periodic	students' own	patterns of this table reflect		
		table, and knowledge of	investigations, models,	patterns of outer electron		
		the patterns of chemical	theories, simulations, peer	states.		
		properties.	review) and the	The fact that stome are		
			assumption that theories	me fact that atoms are		
			and laws that describe the	knowledge of the chemical		
			today as they did in the	properties of the elements		
			nast and will continue to	involved can be used to		
			do so in the future	describe and predict		
				chemical reactions		
				chemical reactions.		

All forms of matter exist as a result of the combination or rearrangement of atoms.	How do particles combine to form the variety of matter one observes?	3.2.9-12.D Develop a model to illustrate that the release or absorption of energy from a chemical reaction system depends upon the changes in total bond energy.	Developing and Using Models Develop a model based on evidence to illustrate the relationships between systems or between components of a system.	A stable molecule has less energy than the same set of atoms separated; one must provide at least this energy in order to take the molecule apart. Chemical processes, their rates, and whether or not energy is stored or released can be understood in terms of the collisions of molecules and the rearrangements of atoms into new molecules, with consequent changes in the sum of all bond energies in the set of molecules that are matched by changes in kinetic energy.	Energy and Matter Changes of energy and matter in a system can be described in terms of energy and matter flows into, out of, and within that system.	energy transfers types of energy bond and binding energy models systems
Chemical Reactions						
Big Idea	Essential Question	Standard	Science and Engineering Practices	Disciplinary Core Idea	Crosscutting Concepts	Vocabulary
The atoms of some substances combine or rearrange to form new substances that have different properties.	How do substances combine or change (react) to make new substances? How does one characterize and explain these reactions and make predictions about them?	3.2.9-12.E Apply scientific principles and evidence to provide an explanation about the effects of changing the temperature or concentration of the reacting particles on the rate at which a reaction occurs.	Constructing Explanations and Designing Solutions Apply scientific principles and evidence to provide an explanation of phenomena and solve design problems, taking into account possible unanticipated effects.	Chemical processes, their rates, and whether or not energy is stored or released can be understood in terms of the collisions of molecules and the rearrangements of atoms into new molecules, with consequent changes in the sum of all bond energies in the set of molecules that	Patterns Different patterns may be observed at each of the scales at which a system is studied and can provide evidence for causality in explanations of phenomena.	collision theory chemical reactions reaction rate reactants solutions temperature concentration solubility patterns scientific principles

				are matched by changes in kinetic energy		
The atoms of some substances combine or rearrange to form new substances that have different properties.	How do substances combine or change (react) to make new substances? How does one characterize and explain these reactions and make predictions about them?	3.2.9-12.F Refine the design of a chemical system by specifying a change in conditions that would produce increased amounts of products at equilibrium.	Constructing Explanations and Designing Solutions Refine a solution to a complex real-world problem, based on scientific knowledge, student-generated sources of evidence, prioritized criteria, and trade off considerations.	In many situations, a dynamic and condition- dependent balance between a reaction and the reverse reaction determines the numbers of all types of molecules present. Criteria may need to be broken down into simpler ones that can be approached systematically, and decisions about the priority of certain criteria over others (trade-offs) may be needed.	Stability and Change Much of science deals with constructing explanations of how things change and how they remain stable.	equilibrium percent yield Le Chatelier's Principle design
The atoms of some substances combine or rearrange to form new substances that have different properties.	How do substances combine or change (react) to make new substances? How does one characterize and explain these reactions and make predictions about them?	3.2.9-12.G Use mathematical representations to support the claim that atoms, and therefore mass, are conserved during a chemical reaction.	Using Mathematics and Computational Thinking Use mathematical representations of phenomena to support claims.	The fact that atoms are conserved, together with knowledge of the chemical properties of the elements involved, can be used to describe and predict chemical reactions.	Energy and Matter In nuclear processes, atoms are not conserved, but the total number of protons plus neutrons is conserved. Connections to Nature of Science Science assumes the universe is a vast single system in which basic laws are consistent.	molar mass balancing equations stoichiometry law of conservation of matter nuclear processes

Nuclear Processers							
Big Idea	Essential Question	Standard	Science and Engineering Practices	Disciplinary Core Idea	Crosscutting Concepts	Vocabulary	
Phenomena involving nuclei	What forces hold nuclei	3.2.9-12.H	Developing and Using	Nuclear processes,	Energy and Matter	isotopes	
explain the formation of the	together and mediate	Develop models to	Models	including fusion, fission, and	In nuclear processes, atoms	nuclear fission radioactive	
elements, radioactivity, and	nuclear processes?	illustrate the changes in	Develop a model based on	radioactive decays of	are not conserved, but the	decay	
the release of energy.		the composition of the	evidence to illustrate the	unstable nuclei, involve	total number of protons plus	stable nuclei unstable	
		nucleus of the atom and	relationships between	release or absorption of	neutrons is conserved.	nuclei	
		the energy released	systems or between	energy. The total number of		half-life	
		during the processes of	components of a system.	neutrons plus protons does		types of radiation (alpha,	
		fission, fusion, and		not change in any nuclear		beta, gamma) nuclear	
		radioactive decay.		process.		fusion	
						models	
Forces and Motion							
Big Idea	Essential Question	Standard	Science and Engineering Practices	Disciplinary Core Idea	Crosscutting Concepts	Vocabulary	
A change in motion of	How can one predict an	3.2.9-12.I	Analyzing and Interpreting	Newton's second law	Cause and Effect	force	
interacting objects can be	object's continued motion,	Analyze data to support	Data	accurately predicts changes	Empirical evidence is	system	
explained and predicted by	changes in motion, or	the claim that Newton's	Analyze data using tools,	in the motion of	required to differentiate	speed	
forces.	stability?	second law of motion	technologies, and/or	macroscopic objects.	between cause and	velocity	
		describes the	models (e.g.,		correlation and make claims	acceleration	
		mathematical	computational,		about specific causes and	mass	
		relationship among the	mathematical) in order to		effects.	net force	
		net force on a	make valid and reliable			vector	
		macroscopic object, its	scientific claims or			scalar	
		mass, and its	determine an optimal			magnitude	
		acceleration.	design solution.			causality	
						cause and effect	
A change in motion of	How can one predict an	3.2.9-12.J	Using Mathematics and	Momentum is defined for a	Systems and System Models	momentum	
interacting objects can be	object's continued motion,	Use mathematical	Computational Thinking	particular frame of	When investigating or	impulse	
explained and predicted by	changes in motion, or	representations to	Use mathematical	reference; it is the mass	describing a system, the	force	
forces.	stability?	support the claim that	representations of	times the velocity of the	boundaries and initial	conservation	
		the total momentum of a	phenomena to describe	object.	conditions of the system	net force	
		system of objects is	explanations.	If a system interacts with	need to be defined.	elastic collision	
				objects outside itself, the		inelastic collision	

		conserved when there is		total momentum of the		system models
		no net force on the		system can change;		
		system.		however, any such change		
				is balanced by changes in		
				the momentum of objects		
				outside the system.		
A change in motion of	How can one predict an	3.2.9-12.К	Constructing Explanations	If a system interacts with	Cause and Effect	force
interacting objects can be	object's continued motion,	Apply scientific and	and Designing Solutions	objects outside itself, the	Systems can be designed to	time
explained and predicted by	changes in motion, or	engineering ideas to	Apply scientific ideas to	total momentum of the	cause a desired effect.	impulse
forces.	stability?	design, evaluate and	solve a design problem,	system can change;		momentum
		refine a device that	taking into account	however, any such change		collision
		minimizes the force on a	possible unanticipated	is balanced by changes in		acceleration
		macroscopic object	effects.	the momentum of objects		design
		during a collision.		outside the system.		
				Defining and Delimiting an		
				Engineering Problem:		
				Criteria and constraints also		
				include satisfying any		
				requirements set by society,		
				such as taking issues of risk		
				mitigation into account, and		
				they should be quantified to		
				the extent possible and		
				stated in such a way that		
				one can tell if a given design		
				meets them.		
				Optimizing the Design		
				Solution:		
				Criteria may need to be		
				broken down into simpler		
				ones that can be		
				approached systematically,		
				and decisions about the		

				priority of certain criteria					
				over others (trade-offs) may					
				be needed					
Types of Interactions	1		1	1					
Big Idea	Essential Question	Standard	Science and Engineering Practices	Disciplinary Core Idea	Crosscutting Concepts	Vocabulary			
All forces between objects,	What underlying forces	3.2.9-12.L	Using Mathematics and	Newton's law of universal	Patterns	gravitational force			
regardless of size or	explain the variety of	Use mathematical	Computational Thinking	gravitation and Coulomb's	Different patterns may be	newton's law of			
direction, arise from only a	interactions observed?	representations of	Use mathematical	law provide the	observed at each of the	gravitation			
few types of interactions.		Newton's Law of	representations of	mathematical models to	scales at which a system is	Coulomb's Law			
		Gravitation and	phenomena to describe	describe and predict the	studied and can provide	electric force			
		Coulomb's Law to	explanations.	effects of gravitational and	evidence for causality in	inverse square law			
		describe and predict the		electrostatic forces	explanations of phenomena.	field			
		gravitational and		between distant objects.		patterns			
		electrostatic forces							
		between objects.		Forces at a distance are					
		,,		explained by fields					
				(gravitational, electric, and					
				magnetic) permeating					
				space that can transfer					
				energy through space.					
				Magnets or electric currents					
				cause magnetic fields;					
				electric charges or changing					
				magnetic fields cause					
				electric fields.					
All forces between objects,	What underlying forces	3.2.9-12.	Planning and Carrying Out	Newton's law of universal	Cause and Effect	electric current			
regardless of size or	explain the variety of	Plan and conduct an	Investigations	gravitation and Coulomb's	Empirical evidence is	field			
direction, arise from only a	interactions observed?	investigation to provide	Plan and conduct an	law provide the	required to differentiate	circuit			
few types of interactions.		evidence that an electric	investigation individually	mathematical models to	between cause and				
		current can produce a	and collaboratively to	describe and predict the	correlation and make claims				
		magnetic field and that a	produce data to serve as	effects of gravitational and	about specific causes and				
		changing magnetic field	the basis for evidence, and	electrostatic forces	effects.				
		can produce an electric	in the design: decide on	between distant objects.					
		current.	types, how much, and						

			accuracy of data needed to produce reliable measurements and consider limitations on the precision of the data (e.g., number of trials, cost, risk, time), and refine the design accordingly.	Forces at a distance are explained by fields (gravitational, electric, and magnetic) permeating space that can transfer energy through space. Magnets or electric currents cause magnetic fields; electric charges or changing magnetic fields cause electric fields. "Electrical energy" may mean energy stored in a battery or energy transmitted by electric currents.		
All forces between objects, regardless of size or direction, arise from only a few types of interactions.	What underlying forces explain the variety of interactions observed?	3.2.9-12.N Communicate scientific and technical information about why the molecular-level structure is important in the functioning of designed materials.	Obtaining, evaluating, and communicating information Communicate scientific and technical information (e.g. about the process of development and the design and performance of a proposed process or system) in multiple formats (including orally, graphically, textually, and mathematically).	Attraction and repulsion between electric charges at the atomic scale explain the structure, properties, and transformations of matter, as well as the contact forces between material objects. The structure and interactions of matter at the bulk scale are determined by electrical forces within and between atoms.	Structure and Function Investigating or designing new systems or structures requires a detailed examination of the properties of different materials, the structures of different components, and connections of components to reveal its function and/or solve a problem.	molecular structure conductivity polarity state of matter friction

Definitions of Energy								
Big Idea	Essential Question	Standard	Science and Engineering Practices	Disciplinary Core Idea	Crosscutting Concepts	Vocabulary		
Energy can be modeled as	What is energy?	3.2.9-12.0	Developing and Using	Energy is a quantitative	Systems and System Models	kinetic energy		
either motions of particles or		Create a computational	Models	property of a system that	Models can be used to	mechanical energy		
as being stored in force		model to calculate the	Create a computational	depends on the motion and	predict the behavior of a	potential energy		
fields.		change in the energy of	model or simulation of a	interactions of matter and	system, but these	energy transfer		
		one component in a	phenomenon, designed	radiation within that	predictions have limited	system		
		system when the change	device, process, or system.	system. That there is a	precision and reliability due	conservation of		
		in energy of the other		single quantity called	to the assumptions and	energy		
		component(s) and		energy is due to the fact	approximations inherent in	first law of		
		energy flows in and out		that a system's total energy	models.	thermodynamics		
		of the system are known.		is conserved, even as,		system models		
				within the system, energy is	Connections to Nature of	basic laws		
				continually transferred from	Science			
				one object to another and	Science assumes the			
				between its various possible	universe is a vast single			
				torms.	are consistent.			
				Conservation of energy				
				means that the total change				
				of energy in any system is				
				always equal to the total				
				energy transferred into or				
				out of the system.				
				Energy cannot be created or				
				destroyed, but it can be				
				transported from one place				
				to another and transferred				
				between systems.				
				Mathematical expressions,				
				which quantify how the				
				stored energy in a system				

				depends on its configuration (e.g. relative positions of charged particles, compression of a spring) and how kinetic energy depends on mass and speed, allow the concept of conservation of energy to be used to predict and describe system behavior. The availability of energy		
				limits what can occur in any		
Energy can be modeled as either motions of particles or as being stored in force fields.	What is energy?	3.2.9-12.P Develop and use models to illustrate that energy at the macroscopic scale can be accounted for as a combination of energy associated with the motions of particles (objects) and energy associated with the relative positions of particles (objects).	Developing and Using Models Develop and use a model based on evidence to illustrate the relationships between systems or between components of a system.	System.Energy is a quantitative property of a system that depends on the motion and interactions of matter and radiation within that system. That there is a single quantity called energy is due to the fact that a system's total energy is conserved, even as, within the system, energy is continually transferred from one object to another and between its various possible forms.At the macroscopic scale, energy manifests itself in multiple ways, such as in	Energy and Matter Energy cannot be created or destroyed—only moves between one place and another place, between objects and/or fields, or between systems.	energy kinetic energy potential energy conservation of energy first law of thermodynamics models

				motion, sound, light, and		
				thermal energy.		
				These relationships are		
				better understood at the		
				microscopic scale, at which		
				all of the different		
				manifestations of energy		
				can be modeled as a		
				combination of energy		
				associated with the motion		
				of particles and energy		
				associated with the		
				configuration (relative		
				position of the particles). In		
				some cases the relative		
				position energy can be		
				thought of as stored in		
				fields (which mediate		
				interactions between		
				particles). This last concept		
				includes radiation, a		
				phenomenon in which		
				energy stored in fields		
				moves across space.		
Energy can be modeled as	What is energy?	3.2.9-12.Q	Constructing explanations	At the macroscopic scale,	Energy and Matter	energy
either motions of particles or		Design, build and refine a	and designing solutions	energy manifests itself in	Changes of energy and	conservation of
as being stored in force		device that works within	Design, evaluate, and/or	multiple ways, such as in	matter in a system can be	energy
fields.		given constraints to	refine a solution to a	motion, sound, light, and	described in terms of energy	energy transfer
		convert one form of	complex real-world	thermal energy.	and matter flows into, out of,	mechanical energy
		energy into another form	problem, based on		and within that system.	kinetic energy
		of energy.	scientific knowledge,	Although energy cannot be		potential energy
			student-generated sources	destroyed, it can be	Connections to Engineering,	technological systems
			of evidence, prioritized	converted to less useful	Technology, and	
			criteria, and tradeoff	forms—for example, to	Applications of Science	
			considerations.			

				thermal energy in the surrounding environment. Criteria and constraints also include satisfying any requirements set by society, such as taking issues of risk mitigation into account, and they should be quantified to the extent possible and state.	Modern civilization depends on major technological systems. Engineers continuously modify these technologies	
Conservation of Energy a	and Energy Transfer			-	-	
Big Idea	Essential Question	Standard	Science and Engineering Practices	Disciplinary Core Idea	Crosscutting Concepts	Vocabulary
The total change of energy in any system is always equal to the total energy transferred into or out of the system.	What is meant by conservation of energy? How is energy transferred between objects or systems?	3.2.9-12.R Plan and conduct an investigation to provide evidence that the transfer of thermal energy when two components of different temperature are combined within a closed system results in a more uniform energy distribution among the components in the system (second law of thermodynamics).	Planning and Carrying Out Investigations Plan and conduct an investigation individually and collaboratively to produce data to serve as the basis for evidence, and in the design: decide on types, how much, and accuracy of data needed to produce reliable measurements and consider limitations on the precision of the data (e.g., number of trials, cost, risk, time), and refine the design accordingly.	Energy cannot be created or destroyed, but it can be transported from one place to another and transferred between systems. Uncontrolled systems always evolve toward more stable states—that is, toward more uniform energy distribution (e.g., water flows downhill, objects hotter than their surrounding environment cool down). Although energy cannot be destroyed, it can be converted to less useful forms—for example, to	Systems and System Models When investigating or describing a system, the boundaries and initial conditions of the system need to be defined and their inputs and outputs analyzed and described using models.	second law of thermodynamics thermal energy heat heat transfer systems closed system system models

				thermal energy in the		
				surrounding environment.		
Relationship Between Energy and Forces						
Big Idea	Essential Question	Standard	Science and Engineering Practices	Disciplinary Core Idea	Crosscutting Concepts	Vocabulary
Forces between objects can result in transfer of energy between these objects.	How are forces related to energy?	3.2.9-12.S Develop and use a model of two objects interacting through electric or magnetic fields to illustrate the forces between objects and the changes in energy of the objects due to the interaction.	Developing and Using Models Develop and use a model based on evidence to illustrate the relationships between systems or between components of a system.	When two objects interacting through a field change relative position, the energy stored in the field is changed.	Cause and Effect Cause and effect relationships can be suggested and predicted for complex natural and human designed systems by examining what is known about smaller scale mechanisms within the system.	Coulomb's Law Lorentz force law field force
Wave Properties						
Big Idea	Essential Question	Standard	Science and Engineering Practices	Disciplinary Core Idea	Crosscutting Concepts	Vocabulary
Big Idea Waves are repeating patterns of motion that transfer energy and information without transferring matter.	Essential Question What are the characteristic properties and behaviors of waves?	Standard 3.2.9-12.T Use mathematical representations to support a claim regarding relationships among the frequency, wavelength, and speed of waves traveling in various media.	Science and Engineering Practices Using mathematics and computational thinking Use mathematical representations of phenomena or design solutions to describe and/or support claims and/or explanations.	Disciplinary Core Idea The wavelength and frequency of a wave are related to one another by the speed of travel of the wave, which depends on the type of wave and the medium through which it is passing.	Crosscutting Concepts Cause and Effect Empirical evidence is required to differentiate between cause and correlation and make claims about specific causes and effects.	Vocabulary medium frequency wave wavelength longitudinal wave transverse wave wave speed

			set, or the suitability of a design.	distances as a series of wave pulses.	Modern civilization depends on major technological systems. Engineers continuously modify these technologies.	
Waves are repeating patterns of motion that transfer energy and information without transferring matter.	What are the characteristic properties and behaviors of waves?	3.2.9-12.V Evaluate the claims, evidence, and reasoning behind the idea that electromagnetic radiation can be described either by a wave model or a particle model and that for some situations one model is more useful than the other.	Obtaining, evaluating, and communicating information Evaluate the claims, evidence, and reasoning behind currently accepted explanations or solutions to determine the merits of arguments.	Waves can add or cancel one another as they cross, depending on their relative phase (i.e., relative position of peaks and troughs of the waves), but they emerge unaffected by each other. (Boundary: The discussion at this grade level is qualitative only; it can be based on the fact that two different sounds can pass a location in different directions without getting mixed up.) Electromagnetic radiation (e.g., radio, microwaves, light) can be modeled as a wave of changing electric and magnetic fields or as particles called photons. The wave model is useful for explaining many features of electromagnetic radiation, and the particle model explains other features.	Systems and System Models Models (e.g., physical, mathematical, computer models) can be used to simulate systems and interactions - including energy, matter, and information flows - within and between systems at different scales.	electromagnetic radiation wave model of radiation particle model of radiation photon system models

Electromagnetic Radiation						
Big Idea	Essential Question	Standard	Science and Engineering Practices	Disciplinary Core Idea	Cross-Cutting Concepts	Vocabulary
Electromagnetic radiation	What is light? How can	3.2.9-12.W	Obtaining, evaluating, and	When light or longer	Cause and Effect	electromagnetic wave
(e.g., radio, microwaves,	one explain the varied	Evaluate the validity and	communicating	wavelength	Cause and effect	wavelength
light) can be modeled as a	effects that involve light?	reliability of claims in	information	electromagnetic radiation is	relationships can be	frequency
wave pattern of changing	What other forms of	published materials of	Evaluate the validity and	absorbed in matter, it is	suggested and predicted for	wave energy
electric and magnetic fields	electromagnetic radiation	the effects that different	reliability of multiple	generally converted into	complex natural and human	wave absorption
that interact with matter.	are there?	frequencies of	claims that appear in	thermal energy (heat).	designed systems by	systems
		electromagnetic	scientific and technical	Shorter wavelength	examining what is known	
		radiation have when	texts or media reports,	electromagnetic radiation	about smaller scale	
		absorbed by matter.	verifying the data when	(ultraviolet, X-rays, gamma	mechanisms within the	
			possible.	rays) can ionize atoms and	system.	
				cause damage to living cells.		
Information Technologie	es and Instrumentation					
Big Idea	Essential Question	Standard	Science and Engineering Practices	Disciplinary Core Idea	Cross-Cutting Concepts	Vocabulary
Useful modern technologies	How are instruments that	3.2.9-12.X	Obtaining, evaluating, and	Solar cells are human-made	Cause and Effect	digital transmission
and instruments have been	transmit and detect waves	Communicate technical	communicating	devices that likewise	Systems can be designed to	wave interference
designed based on an	used to extend human	information about how	information	capture the sun's energy	cause a desired effect.	systems
understanding of waves and	senses?	some technological	Communicate technical	and produce electrical	Connections to Engineering,	technological devices
their interactions with		devices use the principles	information or ideas (e.g.	energy.	Technology, and	systems
matter.		of wave behavior and	about phenomena and/or		Applications of Science	
		wave interactions with	the process of	Information can be digitized	Science and engineering	
		matter to transmit and	development and the	(e.g., a picture stored as the	complement each other in	
		capture information and	design and performance of	values of an array of pixels);	the cycle known as research	
		energy.	a proposed process or	in this form, it can be stored	and development (R&D).	
			system) in multiple	reliably in computer		
			formats (including orally,	memory and sent over long		
			graphically, textually, and	distances as a series of		
			mathematically).	wave pulses.		
				Photoelectric materials emit		
				electrons when they absorb		

light of a high-enough	
frequency.	
Multiple technologies based	
on the understanding of	
waves and their	
interactions with matter are	
part of everyday	
experiences in the modern	
world (e.g., medical	
imaging, communications,	
scanners) and in scientific	
research.	