

Introduction

<u>Science, Technology & Engineering</u>, and <u>Environmental Literacy & Sustainability</u> (STEELS) Standards guide the study of the natural and human-made world through inquiry, problem-solving, critical thinking, and authentic exploration. This document displays a curriculum framework for Middle School Physical Science. It is designed to focus curriculum and teaching, provide guidance for multiple approaches to curriculum development, encourage less reliance on textbooks as curriculum, and avoid activity-oriented teaching without focus/purpose.

Science Long Term Transfer Goals

In support of the Curriculum Framework, Long Term Transfer Goals (LTTG) provide the overarching practices that ground the foundation for a robust curriculum; thus, all curriculum should relate to one or more of the LTTGs detailed below – as they highlight the effective uses of understanding, knowledge, and skill that we seek in the long run; i.e., what we want students to be able to do when they confront new challenges – both in and outside of school.

Students will be able to engage as technological and engineering literate members of a global society, using their learning to:

- 1. Approach science as a reliable and tentative way of knowing and explaining the natural world and designed world.
- 2. Weigh evidence and use scientific approaches to ask questions, investigate, and make informed decisions.
- 3. Make and use observations to analyze relationships and patterns in order to explain phenomena, develop models, and make predictions.
- 4. Evaluate systems, in order to connect how form determines function and how any change to one component affects the entire system.
- 5. Explain how the natural and designed worlds are interrelated and the application of scientific knowledge and technology can have beneficial, detrimental, or unintended consequences.

Grade 6-8 Physical Science

Structure and Properties of Matter						
Big Idea	Essential Question	Standard	Science and Engineering Practices	Disciplinary Core Idea	Crosscutting Concepts	Vocabulary
All forms of matter exist as a result of the combination or rearrangement of atoms.	How do particles combine to form the variety of matter one observes?	3.2.6-8.A Develop models to describe the atomic composition of simple molecules and extended structures.	Developing and Using Models Develop a model to predict and/or describe phenomena.	Substances are made from different types of atoms, which combine with one another in various ways. Atoms form molecules that range in size from two to thousands of atoms. Solids may be formed from molecules, or they may be extended structures with repeating subunits (e.g., crystals).	Scale, Proportion, and Quantity Time, space, and energy phenomena can be observed at various scales using models to study systems that are too large or too small	atoms molecules bonding compounds elements predict phenomena substance scale models
All forms of matter exist as a result of the combination or rearrangement of atoms.	How do particles combine to form the variety of matter one observes?	3.2.6-8.B Develop a model that predicts and describes changes in the particle motion, temperature and state of a pure substance when thermal energy is added or removed.	Developing and Using Models Develop a model to predict and/or describe phenomena.	Gasses and liquids are made of molecules or inert atoms that are moving about relative to each other. In a liquid, the molecules are constantly in contact with others; in a gas, they are widely spaced except when they happen to collide. In a solid, atoms are closely spaced and may vibrate in position but do not change relative locations. The changes of state that occur with variations in temperature or pressure can be described and predicted using these models of matter.	Cause and effect Relationships may be used to predict phenomena in natural or designed systems.	gas liquid solid molecular motion temperature thermal energy heat phase change pressure temperature potential energy kinetic energy pure substance

		The term "heat" as used in	
		everyday language refers both	
		to thermal energy (the motion	
		of atoms or molecules within a	
		substance) and the transfer of	
		that thermal energy from one	
		object to another. In science,	
		heat is used only for this second	
		meaning; it refers to the energy	
		transferred due to the	
		temperature difference	
		between two objects.	
		(secondary)	
		The temperature of a system is	
		proportional to the average	
		internal kinetic energy and	
		potential energy per atom or	
		molecule (whichever is the	
		appropriate building block for	
		the system's material). The	
		details of that relationship	
		depend on the type of atom or	
		molecule and the interactions	
		among the atoms in the	
		material.	
		Temperature is not a direct	
		measure of a system's total	
		thermal energy. The total	
		thermal energy (sometimes	
		called the total internal energy)	
		of a system depends jointly on	
		the temperature, the total	
		number of atoms in the system,	

				and the state of the material.		
				(secondary)		
Chemical Reactions						
Big Idea	Essential Question	Standard	Science and Engineering Practices	Disciplinary Core Idea	Crosscutting Concepts	Vocabulary
The atoms of some substances combine or rearrange to form new substances that have different properties.	How do substances combine or change (react) to make new substances? How does one characterize and explain these reactions and make predictions about them?	3.2.6-8.C Gather and make sense of information to describe how synthetic materials come from natural resources and impact society.	Obtaining, Evaluating, and Communicating Information Gather, read, and synthesize information from multiple appropriate sources and assess the credibility, accuracy, and possible bias of each publication and methods used, and describe how they are supported or now supported by evidence.	Substances react chemically in characteristic ways. In a chemical process, the atoms that make up the original substances are regrouped into different molecules, and these new substances have different properties from those of the reactants.	Structure and Function Structures can be designed to serve particular functions by taking into account properties of different materials, and how materials can be shaped and used.	reactants molecules substance synthetic material natural resource structure and function properties materials
The atoms of some substances combine or rearrange to form new substances that have different properties.	How do substances combine or change (react) to make new substances? How does one characterize and explain these reactions and make predictions about them?	3.2.6-8.D Analyze and interpret data on the properties of substances before and after the substances interact to determine if a chemical reaction has occurred	Analyzing and Interpreting Data Analyze and interpret data to determine similarities and differences in findings.	Each pure substance has characteristic physical and chemical properties (for any bulk quantity under given conditions) that can be used to identify it. Substances react chemically in characteristic ways. In a chemical process, the atoms that make up the original substances are regrouped into different molecules, and these new substances have different properties from those of the reactants.	Patterns Macroscopic patterns are related to the nature of microscopic and atomic level structure.	reactants products precipitate chemical reaction mixture compounds yields physical properties chemical properties patterns substance atoms molecules macroscopic microscopic

The atoms of some substances combine or rearrange to form new substances that have different properties.	How do substances combine or change (react) to make new substances? How does one characterize and explain these reactions and make predictions about them?	3.2.6-8.E Develop and use a model to describe how the total number of atoms does not change in a chemical reaction and thus mass is conserved.	Developing and Using Models Develop a model to describe unobservable.	Substances react chemically in characteristic ways. In a chemical process, the atoms that make up the original substances are regrouped into different molecules, and these new substances have different properties from those of the reactants.	Energy and Matter Matter is conserved because atoms are conserved in physical and chemical processes.	chemical reaction conservation of mass open vs. close system yields reactants products matter models
				The total number of each type of atom is conserved, and thus the mass does not change.		
The atoms of some substances combine or rearrange to form new substances that have different properties.	How do substances combine or change (react) to make new substances? How does one characterize and explain these reactions and make predictions about them?	3.2.6-8.F Undertake a design project to construct, test, and modify a device that either releases or absorbs thermal energy by chemical processes.	Constructing Explanations and Designing Solutions Undertake a design project, engaging in the design cycle, to construct and/or implement a solution that meets specific design criteria and constraints.	Some chemical reactions release energy, others store energy.	Energy and Matter The transfer of energy can be tracked as energy flows through a designed or natural system.	chemical reactions thermal energy design device designed system natural system
Forces and Motion	1		1	1	1	1
Big Idea	Essential Question	Standard	Science and Engineering Practices	Disciplinary Core Idea	Crosscutting Concepts	Vocabulary
A change in motion of interacting objects can be explained and predicted by forces.	How can one predict an object's continued motion, changes in motion, or stability?	3.2.6-8.G Apply Newton's Third Law to design a solution to a problem involving the motion of two colliding objects.	Constructing Explanations and Designing Solutions Apply scientific ideas or principles to design an object, tool, process or system.	For any pair of interacting objects, the force exerted by the first object on the second object is equal in strength to the force that the second object exerts on the first, but in the opposite direction (Newton's third law).	Systems and System Models Models can be used to represent systems and their interactions - such as inputs, processes and output - and energy and matter flows within systems.	force net force balanced unbalanced Newton's laws design solution system models
A change in motion of interacting objects can be	How can one predict an object's continued motion,	3.2.6-8.H Plan an investigation to provide evidence that	Planning and Carrying Out Investigations	The motion of an object is determined by the sum of the forces acting on it; if the total	Stability and Change Explanations of stability and change in natural or designed	reference point force mass

explained and predicted by	changes in motion, or	the change in an object's	Plan an investigation	force on the object is not zero,	systems can be constructed	acceleration
forces.	stability?	motion depends on the	individually and	its motion will change. The	by examining the changes	motion
		sum of the forces on the	collaboratively, and in the	greater the mass of the object,	over time and forces at	dependent variable
		object and the mass of	design: identify	the greater the force needed to	different scales.	independent variable
		the object.	independent and	achieve the same change in		stability and change
			dependent variables and	motion. For any given object, a		designed system
			controls, what tools are	larger force causes a larger		
			needed to do the	change in motion. All positions		
			gathering, how	of objects and the directions of		
			measurements will be	forces and motions must be		
			recorded, and how many	described in an arbitrarily		
			data are needed to	chosen reference frame and		
			support a claim.	arbitrarily chosen units of size.		
				In order to share information		
				with other people, these choices		
				must also be shared.		
Types of Interactions						
Big Idea	Essential Question	Standard	Science and Engineering Practices	Disciplinary Core Idea	Crosscutting Concepts	Vocabulary
All forces between objects,	What underlying forces	3.2.6-8.1	Asking Questions and	Electric and magnetic	Cause and Effect	magnetic force
regardless of size or	explain the variety of	Ask questions about data	Defining Problems	(electromagnetic) forces can be	Cause and effect relationships	electric current

All forces between objects,	What underlying forces	3.2.6-8.1	Asking Questions and	Electric and magnetic	Cause and Effect	magnetic force
regardless of size or	explain the variety of	Ask questions about data	Defining Problems	(electromagnetic) forces can be	Cause and effect relationships	electric current
direction, arise from only a	interactions observed?	to determine the factors	Ask questions that can be	attractive or repulsive, and their	may be used to predict	electromagnetic
few types of interactions.		that affect the strength	investigated within the	sizes depend on the magnitudes	phenomena in natural or	cause and effect
		of electric and magnetic	scope of the classroom,	of the charges, currents, or	designed systems.	hypothesis
		forces.	outdoor environment, and	magnetic strengths involved and		scientific principles
			museums and other public	on the distances between the		magnitude
			facilities with available	interacting objects.		natural system
			resources and, when			designed system
			appropriate, frame a			
			hypothesis based on			
			observations and scientific			
			principles.			
All forces between objects,	What underlying forces	3.2.6-8.J	Engaging in Argument	Gravitational forces are always	Systems and System Models	gravitational forces law
regardless of size or	explain the variety of	Construct and present	from Evidence	attractive. There is a	Models can be used to	of universal gravity
direction, arise from only a	interactions observed?	arguments using	Construct and present oral	gravitational force between any	represent systems and their	mass
few types of interactions.		evidence to support the	and written arguments	two masses, but it is very small	interactions—such as inputs,	weight

		claim that gravitational	supported by empirical	except when one or both of the	processes and outputs—and	models
		interactions are	evidence and scientific	objects have large mass—e.g.,	energy and matter flows	empirical evidence
		attractive and depend on	reasoning to support or	Earth and the sun.	within systems.	energy flow
		the masses of interacting	refute an explanation or a			matter flow
		objects.	model for a phenomenon			inputs
			or a solution to a problem.			outputs
All forces between objects,	What underlying forces	3.2.6-8.K	Planning and Carrying Out	Forces that act at a distance	Cause and Effect	electric force
regardless of size or	explain the variety of	Conduct an investigation	Investigations	(electric, magnetic, and	Cause and effect relationships	magnetic force
direction, arise from only a	interactions observed?	and evaluate the	Conduct an investigation	gravitational) can be explained	may be used to predict	gravitational
few types of interactions.		experimental design to	and evaluate the	by fields that extend through	phenomena in natural or	cause and effect
		provide evidence that	experimental design to	space and can be mapped by	designed systems.	experimental design
		fields exist between	produce data to serve as	their effect on a test object (a		
		objects exerting forces	the basis for evidence that	charged object, or a ball,		
		on each other even	can serve as the basis for	respectively).		
		though the objects are	evidence that can meet			
		not in contact.	the goals of the			
			investigation.			
Definitions of Energy						
Big Idea	Essential Question	Standard	Science and Engineering Practices	Disciplinary Core Idea	Crosscutting Concepts	Vocabulary
Energy can be modeled as	What is energy?	3.2.6-8.L	Analyzing and Interpreting	Motion energy is properly called	Scale, Proportion, and	speed
either motions of particles		Construct and interpret	Data Construct and	kinetic energy; it is proportional	Quantity	velocity
or as being stored in force		graphical displays of data	interpret graphical displays	to the mass of the moving	Proportional relationships	acceleration
fields.		to describe the	of data to identify linear	object and grows with the	(e.g. speed as the ratio of	kinetic energy
		relationships of kinetic	and nonlinear	square of its speed.	distance traveled to time	mass
		energy to the mass and	relationships.		taken) among different types	proportional
		speed of an object.			of quantities provide	relationships
					information about the	graphical displays
					magnitude of properties and	
					processes.	

	Conservation	of Energy a	and Energy	⁷ Transfe
--	---------------------	-------------	------------	----------------------

Big Idea	Essential Question	Standard	Science and Engineering Practices	Disciplinary Core Idea	Crosscutting Concepts	Vocabulary
The total change of energy	What is meant by	3.2.6-8.M	Constructing Explanations	Temperature is a measure of the	Energy and Matter	thermal energy
in any system is always	conservation of energy?	Apply scientific principles	and Designing Solutions	average kinetic energy of	The transfer of energy can be	temperature
equal to the total energy		to design, construct, and	Apply scientific ideas or	particles of matter. The	tracked as energy flows	heat conductivity
transferred into or out of	How is energy transferred	test a device that either	principles to design,	relationship between the	through a designed or natural	energy transfer
the system.	between objects or	minimizes or maximizes	construct, and test a	temperature and the total	system.	kinetic energy
	systems?	thermal energy transfer.	design of an object, tool,	energy of a system depends on		systems
			process or system.	the types, states, and amounts		natural system
				of matter present.		design cycle
				Energy is spontaneously		
				transferred out of hotter regions		
				or objects and into colder ones.		
The total change of energy	What is meant by	3.2.6-8.N	Planning and Carrying Out	Temperature is a measure of the	Scale, Proportion, and	thermal energy
in any system is always	conservation of energy?	Plan an investigation to	Investigations	average kinetic energy of	Quantity	energy transfer
equal to the total energy		determine the	Plan an investigation	particles of matter. The	Proportional relationships	kinetic energy
transferred into or out of	How is energy transferred	relationships among the	individually and	relationship between the	(e.g. speed as the ratio of	proportional
the system.	between objects or	energy transferred, the	collaboratively, and in the	temperature and the total	distance traveled to time	relationships
	systems?	type of matter, the mass,	design: identify	energy of a system depends on	taken) among different types	particles
		and the change in the	independent and	the types, states, and amounts	of quantities provide	temperature
		average kinetic energy of	dependent variables and	of matter present.	information about the	
		the particles as	controls, what tools are		magnitude of properties and	
		measured by the	needed to do the	The amount of energy transfer	processes.	
		temperature of the	gathering, how	needed to change		
		sample.	measurements will be	the temperature of a matter		
			recorded, and how many	sample by a given amount		
			data are needed to	depends on the nature of the		
			support a claim.	matter, the size of the sample,		
				and the environment.		
The total change of energy	What is meant by	3.2.6-8.0	Developing and Using	Temperature is a measure of the	Scale, Proportion, and	kinetic energy
in any system is always	conservation of energy?	Construct, use, and	Models	average kinetic energy of	Quantity	temperature
equal to the total energy	How is energy transferred	present arguments to	Develop a model to predict	particles of matter. The	Time, space, and energy	motion
transferred into or out of	between objects or	support the claim that	and/or describe	relationship between the	phenomena can be observed	matter
the system.	systems?	when the kinetic energy	phenomena.	temperature and the total	at various scales using models	scale

		of an object changes, energy is transferred to or from the object.		energy of a system depends on the types, states, and amounts of matter present. The amount of energy transfer needed to change the temperature of a matter sample by a given amount depends on the nature of the matter, the size of the sample, and the environment.	to study systems that are too large or too small.	model phenomena states of matter systems energy transfer sample		
Relationship Between Energy and Energy Forces								
Big Idea	Essential Question	Standard	Science and Engineering Practices	Disciplinary Core Idea	Crosscutting Concepts	Vocabulary		
Forces between objects can result in transfer of energy between these objects.	How are forces related to energy?	3.2.6-8.P Develop a model to describe that when the arrangement of objects interacting at a distance changes, different amounts of potential energy are stored in the system.	Developing and Using Models Develop a model to describe unobservable mechanisms.	A system of objects may also contain stored (potential) energy, depending on their relative positions. When two objects interact, each one exerts a force on the other that can cause energy to be transferred to or from the object.	Systems and System Models Models can be used to represent systems and their interactions – such as inputs, processes, and outputs – and energy and matter flows within systems.	energy potential energy electric force magnetic force gravitational force system models interactions inputs outputs mechanisms		
Wave Properties								
Big Idea	Essential Question	Standard	Science and Engineering Practices	Disciplinary Core Idea	Crosscutting Concepts	Vocabulary		
Waves are repeating patterns of motion that transfer energy and information without transferring matter.	What are the characteristic properties and behaviors of waves?	3.2.6-8.Q Use mathematical representations to describe a simple model for waves that includes how the amplitude of a wave is related to the energy in a wave.	Using Mathematics and Computational Thinking Use mathematical representations to describe and/or support scientific conclusions and design solutions.	A simple wave has a repeating pattern with a specific wavelength, frequency, and amplitude.	Patterns Graphs and charts can be used to identify patterns in data.	amplitude frequency crest trough wavelength patterns wave design solutions		

Electromagnetic Radiation					
Big Idea Essentia	al Question Standard	Science and Engineering Practices	Disciplinary Core Idea	Crosscutting Concepts	Vocabulary
Electromagnetic radiation (e.g., radio, microwaves, light) can be modeled as a wave pattern of changing electric and magnetic fields that interact with matter.	t? How can one varied effects e light? What s of netic radiation 3.2.6-8.R Develop and use a m to describe how way are reflected, absorb or transmitted throu various materials.	odel Models es Develop and use a model ed, to describe phenomena. gh Herris and the second secon	A sound wave needs a medium through which it is transmitted. When light shines on an object, it is reflected, absorbed, or transmitted through the object, depending on the object's material and the frequency (color) of the light. The path that light travels can be traced as straight lines, except at surfaces between different transparent materials (e.g., air and water, air and glass) where the light path bends. A wave model of light is useful for explaining brightness, color, and the frequency-dependent bending of light at a surface between media. However, because light can travel through space, it cannot be a matter wave, like sound or	Structure and Function Structures can be designed to serve particular functions by taking into account properties of different materials, and how materials can be shaped and used.	waves frequency color light reflection transmission absorption models properties

Information Technologies and Instrumentation							
Big Idea	Essential Question	Standard	Science and Engineering Practices	Disciplinary Core Idea	Crosscutting Concepts	Vocabulary	
Useful modern	How are instruments that	3.2.6-8.5	Information Technologies	Digitized signals (sent as wave	Structure and Function	waves	
technologies and	transmit and detect waves	Integrate qualitative	and Instrumentation	pulses) are a more reliable way	Structures can be designed to	transmission	
instruments have been	used to extend human	scientific and technical	Digitized signals (sent as	to encode and transmit	serve particular functions.	structure and function	
designed based on an	senses?	information to support	wave pulses) are a more	information.		design	
understanding of waves		the claim that digitized	reliable way to encode and			analog	
and their interactions with		signals are a more	transmit information.			digital	
matter.		reliable way to encode					
		and transmit information					
		than analog signals.					