Module B - Continuity of Life

The chart below offers guidance for scoring the PBA. The scoring guide is to be used as a guide. Tutors may develop their own scoring guide that will fit their situation. Students may answer questions differently than the examples provided in this document. Since students may use online resources, they may copy and paste the answers to questions and not be penalized. Students do not need to complete questions with complete sentences, but must ensure that they have answered the questions. If the question asks for a response, students may respond with one of multiple responses. If it asks for three, students must provide three responses. If there is a *right answer*, it is provided below. If there is a narrative, direction for evaluating whether or not it is satisfactory is also provided.

	Scoring Guide	
TASK 1:		
Where do		
puppies		
come from?		
Activity 1:	Mitosis	Meiosis
	Asexual reproduction	Sexual reproduction
	Genetically identical daughter cells	Genetically different daughter cells
	Results in Diploid Cells	Results in Haploid Cells
	2 cells produced	4 cells produced

	Produces somatic (body) cells		Produces gametes	
Activity 2:	Interphase	Interphase Cell grows, replicates organelles, replicates DNA, carries out normal metabolic functions		
	Cell division	 condense, spindle fiber Metaphase: chromosor Anaphase: sister chrom chromosomes, and are of the cell Telophase: chromosom 	abrane breaks down, chromosomes s form nes line up along the cells equator atids are separated, becoming pulled by spindle fibers to opposite poles es have reached opposite poles, 2 nuclear dle dissolves, chromosomes begin to	
	Cytokinesis	new cell wall	two identical daughter cells. between the nuclei, and develops into a ow forms, pinching the cytoplasm in half	

1.Anaphase I					
2. Anaphase II					
3. Prophase I					
4. Metaphase I					
5. Metaphase II					
6. Telophase I					
7. Prophase II					
8. Telophase II and/or cytokinesis					
1. Prophase I, Metaphase I, Anaphase I, Telophase I, Prophase II, Metaphase II, Anaphase II, Telophase					
II/cytokinesis					
2. #3 (prophase I)					
3. Gametes (sex cells)					
1. 78 diploid 39 haploid					
2. 78					
3. 39					
4. Various:					
Mitosis is the basis for asexual reproduction, requires only one parent results in genetically identical					
offspring, low genetic diversity					
Meiosis creates gametes for sexual reproduction. Requires two parents, each one contributing one haploid					
gamete. Produces genetically unique offspring, high genetic diversity					
1a. To make an exact copy of the DNA so that each daughter cell ends up with the correct amount of DNA					
following cell division					
1b. A cell with two copies its DNA (sister chromatids, double-stranded chromosomes)					
-					

	2. Thymine, guanine				
	3. Genetic mutation				
	4. Nondisjunction				
Task 2:					
Activity 1:	DNA ACCGGTTAT AGCCGAGGG TTTAACAAA GGACGCCGA GGGAGGAAA ATCATCCTA				
	mRNA UGGCCAAUA UCGGCUCCC AAAUUGUUU CCUGCGGCU CCCUCCUUU UAGUAGGAU				
	tRNA ACCGGUUAU AGCCGAGGG UUUAACAAA GGACGCCGA GGGAGGAAA AUCAUCCUA				
	A.A. 20-12-13 16-2-5 9-4-8 11-3-2 5-7-8 6-6-10				
	Trait brown coat long leg short tail brown eyes not heavy male				
	Questions:				
	1. The process in which the messenger RNA (mRNA) molecule on a ribosome is decoded to produce a sequence of amino acids for protein synthesis.				
	2. The process in which amino acids are arranged in a linear sequence through the processes of transcription of				
	DNA and to RNA and the translation of RNA to a polypeptide chain.				
	3. The process in which a strand of messenger RNA (mRNA) is synthesized by using the genetic information				
	found on a strand DNA as a template.				
	4. Brown				
	5. Long legged				

	6. Short tail			
Activity 2:	mRNA from Step 2	UUA ACU UGU GUA CGC GGG		
	Protein Sequence from Step 3	Leu – Thr – Cys – Val – Arg - Gly		
	Protein Sequence from Step 4	Leu - Ser - Cys – Val – Arg - Gly		
	MRNA from Step 5	UUA CAC UUG UGU ACG CGG G		
	Protein Sequence from Step 5	Leu – His – Leu – Lys – Thr – Arg -		
	Conclusions:			
	1. Point mutation – protein sequence from step 4 Frameshift mutation – protein sequence from step 5			
	2. Amino acid Ser instea	d of Thr was shown.		
	3. Five amino acids were	changed His, Leu, Lys, Thr, and Arg		
Task 3:				

Activity 1:	1. B (black) or b (brown)
	2. 50%
	3.
	B b
	B BB Bb
	b Bb bb
	4. 75% or ¾
	5. 25% or ¼
	6. Bb
	7.
	B b
	b Bb bb
	b Bb bb
Activity 2:	1. 2
	2. 2
	3.

	Phenotype	Black	Brown	yellow	
		BBEE, BbEE, BBEe, BbEe	bbEE, bbEe	BBee, Bbee, bbee	-
	genotypes				4. Yellow is
	the absence o	of nigment			
			ack parents to have offs	pring with brown coats is if they b	oth carry the
			-	nts to have offspring with yellow c	-
				its who are homozygous for both	
	color depositi	on can only have black offsp	ring.		
	6. Both paren	t genotypes would have to b	e bbEe		
	7. bbEE				
Activity 3:	1. Codomina	ance			
	2. Incomplet	e dominance			
Task 4:					
Activity 1:	1. 7.5				
	2. B				

Activity 2					
Part 2:					
	1. Neither very aggressive, nor very tame in the initial population, and neither very aggressive nor very tame after 20				
	generations.				
	2. Neither very aggressive, nor very tame in the initial population, low aggressiveness/very tame after 20 generations.				
	3. It changed from neither aggressive nor very tame to low aggressiveness/very tame.				
	4. Group A represents wolves in the wild. Selective pressure in the wild favors wolves that are neither very				
	aggressive nor very tame. Group B represents dogs. The selective pressure favors individuals that are very tame.				
	Dogs, surviving in the vicinity of humans benefit from being tame.				
	5. In real life isolation means that the individuals from the two groups would not interbree.				
	6. If wolves and dogs were allowed to regularly interbreed, one prediction might be that the dog's tameness would				
	be reduced and the wolf's tameness would be increased. In terms of real life, it would mean the two groups				
	would be prevented from breeding (e.g., exchanging genes) with each other.				
	7. If dogs and wolves had not been isolated, the small number of "tameness" genes that arose in the population				
	evolving into dogs would likely have been lost in the much larger wolf gene pool, where they would be selected				
	against by the wolf's way of life. This would have made it very unlikely for dogs to ever evolve. Dogs could				
	possibly lose the "tameness" gene.				
	8. Answers will vary but must include an application of one of the following concepts: isolating mechanisms,				
	genetic drift, founder effect, and migration.				
Task 5:					
Activity 1:	Task Which Breed is Evidence				
,	Best Suited				

	Digging and tu	nneling to hunt	В	Short legs, large paws, large lung capacity	
	for small mam	mals		Long snout	
	Running at great speeds		D	Large heart, long legs, flexible spine, large	
				amount of fast-twitch muscle	
	Pulling sleds in	cold snowy	E	Strong, good endurance, thick coat	
	conditions				
	Using scent to	track down prey	А	Long ears, neck folds, huge nasal chambers	
Activity 2:	Traits	Desired	Part 1		
		Value			
	Sight	5			
	Smell	5			
	Speed	5			
	Hearing	5			
	Trainability	5	4 T 11 11 1		
	Friendliness	various		etermined by the interaction of more than one gene	
	(1		2. Average or 'medium' temperament. Polygenic traits show continuous		
	=aggressive,		variation. If two extreme genotypes are crossed, the offspring will inherit		
	5 = friendly)		both extremes, and	an intermediate phenotype will be expressed	
	Part 2				
	1. Parent 1: Various, but must be consistent with the breed chosen				
	2. Parent2:	Various, but mu	st be consistent with	the breed chosen	
	3. Offspring: Various, but		ach trait value must b	e an average of the parent values	

	 No, because the trait values of the two parents will "blend" together to result in an intermediate value, and none of the dogs are 'perfect' 		
	5. Cross the fastest individuals of your existing breed with one another, or cross the fastest individuals of your		
	breed with a different, fast breed (such as breed D)		
	6. The answer is dependent upon what the students selected. Many will say to select Breed E		
Activity 3:	1. Parasitism		
	2.		
	Interaction	Type of symbiosis	Explain HOW/WHY the interaction
			demonstrates the relationship you identified
	Heartworms enter a dog's	Parasitism	The dog is harmed (but not consumed) by the
	bloodstream from the bite of an		heartworms. The heartworms benefit from the
	infected mosquito. The worms		relationship
	mature in the dog's heart, growing in		
	length and clogging the heart. This		
	causes illness and even death to the		
	dog		
	Dogs and humans live closely	Mutualism	Both the dog and human benefit from the
	together and help one another. The		relationship
	dogs get shelter and food, while		
	humans get companionship,		
	protection, and other services		

	On a hot sunny day, many dogs will Commensalism The dog benefits, the tree is unaffected
	seek the shade provided by a nearby
	tree. The dog gets to cool off in the
	shade, but the tree is unaffected
Task 6:	
Activity 1:	One of the following:
	1. They were concerned that the wolves might attack the public, rancher's livestock and the public's pets.
	2. The wolf reduced the mainly the elk population to healthy levels which increased the willow, which increased
	the beaver, which created aquatic habitats.
	3. No, the wolf did not decrease the beaver population.
	4. When the wolf population declined the songbird, beaver, and willow tree population also declined.
Activity 2:	1.
	a. Grassbiotic
	b. Waterabiotic
	c. Glucoseabiotic
	d. A wormbiotic
	2.
	a. Organism – Population – Community – Ecosystem – Biome – Biosphere
	3.
	a. Producer:willow, vegetation
	b. Consumer:elk, bison, beaver,, herbivores
	c. Consumer:song bird, fish,,omnivores

d. Consumer: wolves

e. Consumer:

(*answers can vary but must pertain to video/article of Yellowstone National Park)

- **4.** Trophic levels are the feeding position in a food chain such as primary producers, herbivore, primary carnivore, etc. Green plants form the first trophic level, the producers. Herbivores form the second trophic level, while carnivores form the third and even the fourth trophic levels.
- 5. Two laws of physics are important in the study of energy flow through ecosystems. The first law of thermodynamics states that energy cannot be created or destroyed; it can only be changed from one form to another. Energy for the functioning of an ecosystem comes from the Sun. Solar energy is absorbed by plants where in it is converted to stored chemical energy. The **second law of thermodynamics** states that whenever energy is transformed, there is a loss energy through the release of heat. When one animal feeds off another, there is a loss of heat (energy) in the process. Additional loss of energy occurs during respiration and movement. Hence, more and more energy is lost as one moves up through trophic levels.
- 6. The amount of energy available to one trophic level is limited by the amount stored by the level below. Because energy is lost in the transfer from one level to the next, there is successively less total energy as you move up trophic levels. In general, we would expect that higher trophic levels would have less total biomass than those below, because less energy is available to them. So, in order to support the wolves in Yellowstone, So the mass of wolves should be less than the mass of other consumers and producers, and the mass of consumers are less than the mass of plants.