

Additional Practice 7-1 **Estimate Sums** and Differences of Fractions

Another Look!

Estimate $\frac{10}{12} - \frac{4}{9}$.

You can use halfway numbers to help decide if each fraction is closest to 0, to $\frac{1}{2}$, or to 1.


Step 1

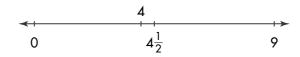
Is $\frac{10}{12}$ closest to 0, $\frac{1}{2}$, or 1?

Find the halfway number between 0 and the denominator.

6 is halfway between 0 and 12.

Decide if the numerator is about the same as the halfway number, closer to 0, or closer to 12.

10 is closest to 12.

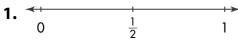

So, $\frac{10}{12}$ is closest to 1.

Step 2

Is $\frac{4}{9}$ closest to 0, $\frac{1}{2}$, or 1?

If the numerator is closest to the halfway number, the fraction is closest to $\frac{1}{2}$.

 $4\frac{1}{2}$ is halfway between 0 and 9.



4 is closest to $4\frac{1}{2}$.

So, $\frac{4}{9}$ is closest to $\frac{1}{2}$.

 $\frac{10}{12} - \frac{4}{9}$ is about $1 - \frac{1}{2} = \frac{1}{2}$.

Leveled Practice In 1-7, estimate each sum or difference by replacing each fraction with $0, \frac{1}{2}$, or 1.

$$\frac{4}{18} + \frac{3}{7}$$

$$\frac{4}{18}$$
 Closest to: $\frac{0}{1}$

$$\frac{4}{18}$$
 Closest to: $\frac{0}{\frac{1}{2}}$

Estimate:
$$\frac{1}{2} = \frac{\frac{1}{2}}{2}$$

2.
$$\frac{8}{15} + \frac{2}{5}$$
 1

4.
$$\frac{8}{10} + \frac{4}{9} = \frac{1}{2}$$

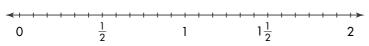
6.
$$\frac{15}{20} + \frac{7}{8}$$
 2

5.
$$\frac{12}{15} - \frac{3}{7} = \frac{1}{2}$$

3. $\frac{17}{21} - \frac{2}{10}$]

7. $\frac{8}{14} - \frac{4}{10}$ 0

8. Sam and Lou need a total of 1 foot of wire for a science project. Sam's wire measured $\frac{8}{12}$ -foot long. Lou's wire measured $\frac{7}{8}$ -foot long. Do they have enough wire for the science project? Explain your reasoning.


Yes. Sample answer: $\frac{8}{12}$ is closest to $\frac{1}{2}$. $\frac{7}{8}$ is closest to 1. $\frac{1}{2} + 1 = 1\frac{1}{2}$

- 9. Construct Arguments Katya measured the growth of a plant seedling. The seedling grew $\frac{1}{3}$ inch by the end of the first week and another $\frac{5}{6}$ inch by the end of the second week. About how much did the seedling grow in the first 2 weeks? Explain how you made your estimate. Sample answer: About $1\frac{1}{2}$ inches; $\frac{1}{3}$ is closest to $\frac{1}{2}$. $\frac{5}{6}$ is closest to 1. Add $\frac{1}{2} + 1 = 1\frac{1}{2}$.
- 10. A scientist measured the amount of rain that fell in a town during one month. How much more rainfall was there in Week 4 than in Week 1?

1.47 millimeters

	March Rainfall	
ATA	Week	Millimeters
	1	2.6
	2	3.32
	3	4.06
	4	4.07

11. Higher Order Thinking Jack is growing Red Wiggler worms to help make compost. He measured the lengths of two young worms. The 10-day old worm is $\frac{10}{12}$ inch long. The 20-day old worm is $1\frac{4}{6}$ inches long. About how much longer is the 20-day old worm than the 10-day old worm? Explain how you found your estimate.

Sample answer: About $\frac{1}{2}$ inch; $1\frac{4}{6}$ is closest to $1\frac{1}{2}$. $\frac{10}{12}$ is closest to 1. Subtract $1\frac{1}{2} - 1 = \frac{1}{2}$.

Assessment Practice

12. Julia has to mow two yards. She will need $\frac{13}{16}$ gallon of gas to mow the first yard and $\frac{2}{5}$ gallon to mow the second yard. She has $1\frac{1}{2}$ gallons of gas in her can. Does she have enough to mow both yards? Explain.

Yes. The first yard takes less than 1 gallon. The second takes less than $\frac{1}{2}$ gallon. So the two yards will take less than $1\frac{1}{2}$ gallons altogether.