

Introduction

Science, Technology & Engineering, and Environmental Literacy & Sustainability (STEELS) Standards guide the study of the natural and humanmade world through inquiry, problem-solving, critical thinking, and authentic exploration. This document displays a curriculum framework for Environmental Literacy & Sustainability. It is designed to focus curriculum and teaching, provide guidance for multiple approaches to curriculum development, encourage less reliance on textbooks as curriculum, and avoid activity-oriented teaching without focus/purpose

Environmental Literacy And Sustainability Long Term Transfer Goals

Long Term Transfer Goals (LTTG) provide the overarching practices that serve as a foundation for a robust curriculum. All curricula should relate to one or more of the LTTGs detailed below – as they highlight the effective uses of understanding, knowledge, and skill that we seek in the long run (i.e., what we want students to be able to do when they confront new challenges – both in and outside of school.)

Students will be able to independently use their learning to:

- Engage in informed consumer practices and choices that take into account the impact on agricultural and environmental systems.
- Categorize, analyze, and interpret how humans and environmental systems relate and affect one another.
- Evaluate and engage in discussion surrounding local and global issues that relate to resource use and management.
- Examine, analyze, interpret, and apply how an individual and community impacts the use and management of natural resources.
- Examine, develop, analyze, and interpret how watersheds function as a system and are impacted by external factors.
- Engage in informed use of land and water to contribute to a positive impact on local watersheds and wetlands.
- Understand how complex human and natural systems interact with each other and use empathy and data- informed evidence to make choices for the well-being of other species, including humans and the environment.

- Integrate scientific practices to research and investigate complex issues, problems, and phenomena.
- Understand, describe, and communicate the interconnected nature of local, regional, national, and global scales of environmental issues.
- Evaluate cost-benefit analysis in addressing solutions to environmental impacts.
- Carry out an investigation and collect data in an authentic environmental setting.
- Explain how the natural and designed worlds are interrelated and the application of scientific knowledge, technology, and engineering can have beneficial or harmful consequences, some of which may be unintended.
- Make informed decisions and identify solutions to environmental challenges.
- Recognize environmental injustices and take actions to mitigate them at various scales.

3.4 Environmental Literacy and Sustainability

Sub-domain: Agricultural and Environmental Systems and Resources

Strand: Agricultural Systems

Long Term Transfer Goals across all grades

Students will be able to independently use their learning to:

Engage in informed consumer practices and choices that take into account the impact on agricultural and environmental systems. Categorize, analyze, and interpret how humans and environmental systems relate and affect one another.

Big Idea

Living things, including humans, utilize natural resources in ways that impact agricultural and environmental systems.

Essential Questions

may be used or modified across grade bands

How do living things utilize natural resources in ways that impact agricultural and environmental systems? How do agricultural systems interact with environmental systems?

Component	K-2	3-5	6-8	9-12
Performance Expectation (Standard)	3.4 K-2.A Categorize ways people harvest, re-distribute, and use natural resources.	3.4 3-5.A Analyze how living organisms, including humans, affect the environment in which they live, and how their environment affects them.	3.4.6-8.A Develop a model to describe how agricultural and food systems function, including the sustainable use of natural resources and the production, processing, and management of food, fiber, and energy.	3.4.9-12.A Analyze and interpret how issues, trends, technologies, and policies impact agricultural, food, and environmental systems and resources.
Clarifying Statement	Examples could include that trees provide food, fiber, and building materials. Trees are logged, transported, and processed into different products, such as fiber, furniture, and buildings. Fruits and nuts from trees are picked, transported, and processed.	Emphasis is on how plants and animals impact their environment and how their environment impacts them. Examples include how pollinators impact food, plants prevent erosion, and sidewalks/roads change water flow.	Emphasis is on models that use inputs and outputs to highlight the lifecycle of food and fiber products.	Emphasis is on the cause and effect relationship whether it be positive or negative.

	Natural Resources	Human Impacts on Earth	Natural Resources	Ecosystem Dynamics,
	Living things need water, air, and	Systems	Humans depend on Earth's land,	Functioning, and Resilience
	resources from the land, and they	Human activities in agriculture,	ocean, atmosphere, and	A complex set of interactions
	live in places that have the things	industry, and everyday life have	biosphere for many different	within an ecosystem can keep its
	they need. Humans use natural	had major effects on the land,	resources. Minerals, fresh water,	numbers and types of organisms
	resources for everything they do.	vegetation, streams, ocean, air,	and biosphere resources are	relatively constant over long
		and even outer space. But	limited, and many are not	periods of time under stable
		individuals and communities are	renewable or replaceable over	conditions. If a modest biological
		doing things to help protect	human lifetimes. These	or physical disturbance to an
		Earth's resources and	resources are distributed	ecosystem occurs, it may return
		environments.	unevenly around the planet as a	to its more or less original status
			result of past geologic processes.	(i.e., the ecosystem is resilient),
				as opposed to becoming a very
			Human Impacts on Earth	different ecosystem. Extreme
			Systems	fluctuations in conditions or the
Disciplinary			Typically as human populations	size of any population, however,
Core Ideas			and per-capita consumption of	can challenge the functioning of
			natural resources increase, so do	ecosystems in terms of resources
			the negative impacts on Earth	and habitat availability.
			unless the activities and	
			technologies involved are	Natural Resources
			engineered otherwise.	Resource availability has guided
				the development of human
				society.
				Human Impacts on Earth
				Systems The sustainability of
				human societies and the
				biodiversity that supports them
				requires responsible
				management of natural
				resources.
Crosscutting	Cause and Effect	Cause and Effect	Systems and System Models	Cause and Effect
Concepts				
001100pt0	Systems and System Models	Structure and Function		
Scientific &	Obtaining, Evaluating, and	Analyzing and Interpreting Data	Developing & Using Models	Analyzing and Interpreting Data
Engineering	Communicating Information			
Practices	An alterian and laterantics. Det			
	Analyzing and Interpreting Data			

Vocabulary	wood, fruit, wool, garden, compost, energy, fiber, harvest, natural resources, recycle, reuse, reuse, transportation, food-fiber system, agriculture, farm, orchard	adaptation, ecosystem, biomes, producer, consumer, decomposer, food chain/web, harvest, waste chain, renewable, nonrenewable, pollinators, predator or/prey, erosion, dependence, drought	aquaculture, silviculture, arable, domestication, biofuels, by- product, domestication, food/fiber system, animal husbandry, nutrient load, pesticides, irrigation, crop-rotation, seasonal crop, textile	best management practices (BMP), biodiversity, diversity, riparian, buffer zone, carrying capacity, diversity Index, limiting factors, mitigation, nitrogen organism population dynamics, peculation, risk management, succession, sustainability, geospatial technologies, subsidies
------------	---	---	---	--

3.4 Environmental Literacy and Sustainability

Sub-domain: Agricultural and Environmental Systems and Resources

Strand: Environment and Society

Long Term Transfer Goals across all grades

Students will be able to independently use their learning to:

Evaluate and engage in discussion surrounding local and global issues that relate to resource use and management. Examine, analyze, interpret, and apply how an individual and community impacts the use and management of natural resources.

Big Idea

Human cultures and societies experience and interact with the environment in various ways.

Essential Questions

may be used or modified across grade bands

How do human cultures and societies experience, interact, and value local, regional, and/or global environments? How do various human cultures express their beliefs about nature and the environment? How are natural resources managed by people from various cultures and communities?

Component	K-2	3-5	6-8	9-12
Performance Expectation (Standard)	3.4.K-2.B Examine how people from different cultures and communities, including one's own, interact and express their beliefs about nature.	3.4.3-5.B Make a claim about the environmental and social impacts of design solutions and civic actions, including their own actions.	3.4.6-8.B Analyze and interpret data about how different societies (economic and social systems) and cultures use and manage natural resources differently.	3.4.9-12.B Apply research and analytical skills to evaluate the conditions and motivations that lead to conflict, cooperation, and change among individuals, groups, and nation.
Clarifying Statement	Emphasis is on how students' interactions and beliefs about nature compare to someone living in a different community. Emphasis is not on judging anyone's interactions or beliefs about nature.	Emphasis is on investigating the short and long term consequences or effects of design solutions (i.e., best management practices such as manure management plans, riparian buffers, and wildlife corridors).	Emphasis is on comparing and contrasting data from two or more societies and cultures to draw evidence-based conclusions. Examples could include how different societies and cultures manage agriculture, recycling and waste management, fossil fuels, land development, etc.	Emphasis is on the effects of agriculture and natural resource availability, quality, control, and utilization.

	Natural Resources	Human Impacts on Earth	Natural Resources	Ecosystem Dynamics,
	Living things need water, air, and	Systems	Humans depend on Earth's land,	Functioning, and Resilience
	resources from the land, and they	Human activities in agriculture,	ocean, atmosphere, and	A complex set of interactions
	live in places that have the things	industry, and everyday life have	biosphere for many different	within an ecosystem can keep its
	they need. Humans use natural	had major effects on the land,	resources. Minerals, fresh water,	numbers and types of organisms
	resources for everything they do.	vegetation, streams, ocean, air,	and biosphere resources are	relatively constant over long
		and even outer space. But	limited, and many are not	periods of time under stable
	Human Impacts on Earth	individuals and communities are	renewable or replaceable over	conditions. If a modest biological
	Systems Things that people do	doing things to help protect	human lifetimes. These	or physical disturbance to an
	to live comfortably can affect the	Earth's resources and	resources are distributed	ecosystem occurs, it may return
	world around them. But they can	environments.	unevenly around the planet as a	to its more or less original status
	make choices that reduce their		result of past geologic processes.	(i.e., the ecosystem is resilient),
	impacts on the land, water, air,	Natural Resources		as opposed to becoming a very
	and other living things.	Energy and fuels that humans	Human Impacts on Earth	different ecosystem. Extreme
		use are derived from natural	Systems	fluctuations in conditions or the
Disciplinary		sources, and their use affects the	Human activities have	size of any population, however,
Core Ideas		environment in multiple ways.	significantly altered the	can challenge the functioning of
		Some resources are renewable	biosphere, sometimes damaging,	ecosystems in terms of resources
		over time, and others are not.	or destroying natural habitats and	and habitat availability.
			causing the extinction of other	
			species. But changes to Earth's	Natural Resources
			environments can have different	Resource availability has guided
			impacts (negative and positive)	the development of human
			for different living things.	society.
				Human Impacts on Earth
				Systems
				The sustainability of human
				societies and the biodiversity that
				supports them requires
				responsible management of
				natural resources.
	Patterns	Cause and Effect	Cause and Effect	Connections to Nature of Science
Crosscutting				Science Addresses Questions
Concepts	Cause and Effect			About the Natural and Material
				World
Scientific &	Obtaining, Evaluating, and	Engaging in Argument From	Analyzing and Interpreting Data	Obtaining, Evaluating, and
Engineering	Communicating Information	Evidence		Communicating Information
Practices				
PLACINOS		1		

	pattern, consumer, local, global,	habitat, impacts, biodiversity,	culture, perspectives, resource	Best Management Practices
	stability, change, environment,	population, organism	management, waste	(BMP) biogeochemical,
	community, cause and effect,	consequences, waste disposal,	stream/management, fossil fuel,	biodiversity, culture,
Vocabulary	consequence, natural resources,	riparian zone, buffering, capacity,	land development land use,	desertification, carrying capacity,
vocabulary	habitat	wildlife corridor, best	biotic, abiotic, extraction,	overharvest, pollution tolerance,
		management practices,	atmosphere biosphere, minerals,	diversity index, limiting factors,
		consumer, recycle, land use,	extinction, renewable	mitigation, niche, population
		treatment	nonrenewable, habitat loss,	dynamics. risk management,
			pollution	sustainability

3.4 Environmental Literacy and Sustainability

Sub-domain: Agricultural and Environmental Systems and Resources

Strand: Watersheds and Wetlands

Long Term Transfer Goals across all grades

Students will be able to independently use their learning to:

Examine, develop, analyze, and interpret how watersheds function as a system and are impacted by external factors. Engage in informed use of land and water to contribute to a positive impact on local watersheds and wetlands.

Big Idea

Watersheds and wetlands function as interconnected systems that support, impact, and are influenced by living things.

Essential Questions

may be used or modified across grade bands

How do watersheds and wetlands function as interconnected systems that support, impact, and are influenced by living things? How do human actions impact the functions of watersheds and wetlands?

Component	K-2	3-5	6-8	9-12
Performance Expectation (Standard)	Intentionally Blank	3.4.3-5.C Examine ways you influence your local environment and community by collecting and displaying data.	3.4.6-8.C Develop a model to describe how watersheds and wetlands function as systems, including the roles and functions they serve.	3.4.9-12.C Analyze and interpret how issues, trends, technologies, and policies impact watersheds and water resources.
Clarifying Statement	Intentionally Blank	Emphasis is on analyzing individual student behavior. Data can be collected and displayed using multiple digital and analog tools (e.g., computers, calculators, timers) and formats (e.g., graphs, tables, charts).	Examples of models could include pictorial (2D), abstract, concrete (3D), and computer- simulated models.	Emphasis is on the cause-and- effect relationship, whether it be positive or negative.

	Natural Resources	Interdependent Relationships	Ecosystem Dynamics,
	Energy and fuels (that humans	in Ecosystems	Functioning, and Resilience
	ise) are derived from natural	Organisms, and populations of	Moreover, anthropogenic
	ources, and their use affects the	organisms, are dependent on	changes (induced by human
	environment in multiple ways.	their environmental interactions	activity) in the environment—
	Some resources are renewable	both with other living things and	including habitat destruction,
0'	over time, and others are not.	with nonliving factors.	pollution, introduction of invasive
		In any ecosystem, organisms and	species, overexploitation, and
	luman Impacts on Earth	populations with similar	climate change—can disrupt an
	Systems	requirements for food, water,	ecosystem and threaten the
	luman activities in agriculture,	oxygen, or other resources may	survival of some species.
	ndustry, and everyday life have	compete with each other for	
	nad major effects on the land,	limited resources, access to	Biodiversity and Humans
	egetation, streams, ocean, air,	which consequently constrains	Biodiversity is increased by the
	and even outer space. But	their growth and reproduction;	formation of new species
	ndividuals and communities are	3)Growth of organisms and	(speciation) and decreased by
	loing things to help protect	population increases are limited	the loss of species (extinction).
	Earth's resources and	by access to resources.	Humans depend on the living
Core Ideas et	environments.		world for the resources and other
		Ecosystem Dynamics,	benefits provided by biodiversity.
		Functioning, and Resilience	But human activity is also having
		Ecosystems are dynamic in	adverse impacts on biodiversity
		nature; their characteristics can	through overpopulation,
		vary over time. Disruptions to any	overexploitation, habitat
		physical or biological component	destruction, pollution, introduction
		of an ecosystem can lead to	of invasive species, and climate
		shifts in all its populations.	change.
		The Roles of Water in Earth's	Natural Resources
		Surface Processes	Resource availability has guided
		Water continually cycles among	the development of human
		land, ocean, and atmosphere via	society.
		transpiration, evaporation,	2
		condensation and crystallization,	
		and precipitation, as well as	
		downhill flows on land.	
Crosscutting Intentionally Blank C	Cause and Effect	Systems and System Models	Cause and Effect
Crosscutting			
Concepts		Structure and Function	Stability and Change
	Dbtaining, Evaluating, and	Developing and Using Models	Analyzing and Interpreting Data
	Communicating Information	·	
Engineering			
	Constructing Explanations and		
	Designing Solutions		

Vocabulary	Intentionally Blank	best management practices, contour, consequences, pollution, discharge, buffers, runoff, waste,	erosion, runoff, agriculture, land use,(im-)permeable, riparian zone, filtration, absorption, water	regulations, land use, zoning, non-point source, soil conservation, hydrogeologic
vocabulary		storm drains, stormwater	column, macroinvertebrates,	systems, resilience, stream order,
		management, up/downstream,	ecological function, nutrient	permitting, monitoring
		water cycle, nutrient cycle,	management, watershed,	
		watershed, wetlands, corridor	wetlands, floodplain	