Writing Sine and Cosine Equations Based off of Graphs

$$
y=\operatorname{asin} b(x+c)+d \quad y=\operatorname{acos} b(x+c)+d
$$

$a=$ amplitude $\quad b=$ helps find the period $\quad c=$ shift left/right $\quad d=$ shift up/down

1. Find the period \rightarrow and in turn find the " \mathbf{b} " value

- 2 ways:
- Look to see how far the graph travels before it starts to repeat itself
- Or, identify the measurement horizontally from max to max or from min to min
- If the period is not 2π, then there is $a b$ value (that is not 1). Find this by plugging in the period into the equation $\frac{2 \pi}{b}=$ period, and solve for b. If the period is $2 \pi, b$ is 1

2. Find the d value:

- 2 ways:
- $\mathrm{d}=\frac{\max +\min }{2}$
- Or, if the graph looks like it was picked up and moved/shifted up or down, look to see where the new x axis would be (if the graph moves, this axis moves with it) by seeing where the graph splits in half horizontally. That horizontal line is your d value

3. Find the amplitude (a value):

- 2 ways:
- amplitude $=\frac{\max -\min }{2}$
- Or, measure the distance from the x axis to the max or from the x axis to the min
- Remember that x axis isn't always the most basic x axis where $y=0 \rightarrow$ if the graph is shifted up or down, the x axis is in a new place because the entire (symmetrical) graph was shifted. You can easily see this by splitting the graph in half horizontally
- How to know if the a value is positive or negative: based off of your c value you picked (starting point- which you can change as you want to write different equations) (the negative really shows a flip over the x axis)

	Sine	Cosine
$a>0$	Intercept (c), max, intercept, \min	Max, intercept, min, intercept
$\mathrm{a}<0$	Intercept (c), min, intercept, \max	Min (c), intercept, max, intercept

4. Find the \mathbf{c} value \rightarrow your c value is where your starting point is. You can choose this! Choose one of the first 2 points on the graph that is easy to see. The x value of this point is your c value. Depending on which of the first 2 points you choose, your function could be different, yet their graphs will end up looking the same

- Since we know if we're writing a sine or cosine function based on step 3, we also know our functions parent function. So, if our graph seems to shift to the right, the c value will be negative, and if it shifts to the left, it will be positive

