

ESSENTIAL OF HUMAN ANATOMY AND PHYSIOLOGY

ELAINE N. MARIEB

© 2012 Pearson Education, Inc.

PowerPoint[®] Lecture Slides

Prepared by Patty Bostwick-Taylor, Florence-Darlington Technical College

CHAPTER

The Lymphatic System and Body Defenses

The Lymphatic System

- Consists of two semi-independent parts
 - Lymphatic vessels
 - Lymphoid tissues and organs

- Lymphatic system functions
 - Transports escaped fluids back to the blood
 - Plays essential roles in body defense and resistance to disease

Lymphatic Characteristics

- Lymph —excess tissue fluid carried by lymphatic vessels
- Properties of lymphatic vessels
 - One way system toward the heart
 - No pump
 - Lymph moves toward the heart
 - Milking action of skeletal muscle
 - Rhythmic contraction of smooth muscle in vessel walls

Lymphatic Vessels

- Lymph capillaries
 - Walls overlap to form flap-like minivalves
 - Fluid leaks into lymph capillaries
 - Capillaries are anchored to connective tissue by filaments
 - Higher pressure on the inside closes minivalves
 - Fluid is forced along the vessel

Lymphatic Vessels

- Lymphatic collecting vessels
 - Collect lymph from lymph capillaries
 - Carry lymph to and away from lymph nodes
 - Return fluid to circulatory veins near the heart
 - Right lymphatic duct
 - Thoracic duct

Lymph

- Harmful materials that enter lymph vessels
 - Bacteria
 - Viruses
 - Cancer cells
 - Cell debris

Lymph Nodes

• Filter lymph before it is returned to the blood

- Defense cells within lymph nodes
 - Macrophages —engulf and destroy foreign substances
 - Lymphocytes provide immune response to antigens

Lymph Node Structure

Most are kidney-shaped and less than 1 inch long

Cortex

- Outer part
- Contains follicles—collections of lymphocytes

Medulla

- Inner part
- Contains phagocytic macrophages

Flow of Lymph Through Nodes

- Lymph enters the convex side through afferent lymphatic vessels
- Lymph flows through a number of sinuses inside the node
- Lymph exits through efferent lymphatic vessels
- Fewer efferent than afferent vessels causes flow to be slowed

Other Lymphoid Organs

- Several other organs contribute to lymphatic function
 - Spleen
 - Thymus
 - Tonsils
 - Peyer's patches

Spleen

- Located on the left side of the abdomen
- Filters blood
- Destroys worn out blood cells
- Forms blood cells in the fetus
- Acts as a blood reservoir

Thymus Gland

- Located low in the throat, overlying the heart
- Functions at peak levels only during childhood
- Produces hormones (like thymosin) to program lymphocytes

Tonsils

- Small masses of lymphoid tissue around the pharynx
- Trap and remove bacteria and other foreign materials
- Tonsillitis is caused by congestion with bacteria

Peyer's Patches

- Found in the wall of the small intestine
- Resemble tonsils in structure
- Capture and destroy bacteria in the intestine

Mucosa-Associated Lymphatic Tissue (MALT)

- Includes
 - Peyer's patches
 - Tonsils
 - Other small accumulations of lymphoid tissue
- Acts as a sentinel to protect respiratory and digestive tracts

Body Defenses

- The body is constantly in contact with bacteria, fungi, and viruses
- The body has two defense systems for foreign materials
 - Innate (nonspecific) defense system
 - Adaptive (specific) defense system
- Immunity—specific resistance to disease

The Immune System		
Innate (nonspecific) defense mechanisms		Adaptive (specific) defense mechanisms
First line of defense	Second line of defense	Third line of defense
 Skin Mucous membranes Secretions of skin and mucous membranes 	 Phagocytic cells Natural killer cells Antimicrobial proteins The inflammatory response 	 Lymphocytes Antibodies Macrophages and other antigen-presenting cells

Body Defenses

- Innate (nonspecific) defense system
 - Mechanisms protect against a variety of invaders
 - Responds immediately to protect body from foreign materials
- Adaptive (specific) defense system
 - Specific defense is required for each type of invader

Innate (Nonspecific) Body Defenses

- Innate body defenses are mechanical barriers to pathogens such as
 - Body surface coverings
 - Intact skin
 - Mucous membranes
 - Specialized human cells
 - Chemicals produced by the body

Surface Membrane Barriers: First Line of Defense

- Skin and mucous membranes
 - Physical barrier to foreign materials
 - Also provide protective secretions
 - pH of the skin is acidic to inhibit bacterial growth
 - Sebum is toxic to bacteria
 - Vaginal secretions are very acidic

Surface Membrane Barriers: First Line of Defense

- Stomach mucosa
 - Secretes hydrochloric acid
 - Has protein-digesting enzymes
- Saliva and lacrimal fluid contain lysozymes, an enzyme that destroy bacteria
- Mucus traps microogranisms in digestive and respiratory pathways

- Natural killer cells
- Inflammatory response
- Phagocytes
- Antimicrobial proteins

- Natural killer (NK) cells
 - Can lyse (disintegrate or dissolve) and kill cancer cells
 - Can destroy virus-infected cells
 - Release a chemical called **perforin** to target the cell's membrane and nucleus, causing disintegration

- Inflammatory response
 - Triggered when body tissues are injured
 - Four most common indicators of acute inflammation
 - Redness
 - Heat
 - Swelling
 - Pain

- Functions of the inflammatory response
 - Prevents spread of damaging agents
 - Disposes of cell debris and pathogens through phagocytosis
 - Sets the stage for repair

- Process of the inflammatory response:
 - Neutrophils migrate to the area of inflammation by rolling along the vessel wall
 - They squeeze through the capillary walls by diapedesis to sites of inflammation
 - Neutrophils gather in the precise site of tissue injury (positive chemotaxis) and consume any foreign material present.

Inflammatory chemicals diffusing from the inflamed site act as chemotactic agents

Neutrophils

1 Enter blood from bone marrow and roll along the vessel wall 2 Diapedesis

Positive

chemotaxis

3

Capillary wall – Endothelium – J Basement membrane –

Phagocytes

• Cells such as neutrophils and macrophages

- Engulf foreign material into a vacuole
- Enzymes from lysosomes digest the material
Innate (Nonspecific) Defense System Cells and Chemicals: Second Line of Defense

- Phagocytosis
 - Neutrophils move by diapedesis to clean up damaged tissue and/or pathogens

 Monocytes become macrophages and complete disposal of cell debris

(a) A macrophage (purple) uses its cytoplasmic extensions to pull spherical bacteria (green) toward it. Scanning electron micrograph (2550×).

© 2012 Pearson Education, Inc.

engulfs the particles, forming a phagosome. 3 Lysosome

fuses with the phagocytic vesicle, forming a phagolysosome.

(4)Lysosomal enzymes digest the pathogens or debris, leaving a residual body.

5 Exocytosis of the vesicle indigestible and residual material.

Cells and Chemicals: Second Line of Defense

- Antimicrobial proteins
 - Attack microorganisms
 - Hinder reproduction of microorganisms
- Most important
 - Complement proteins
 - Interferon

Cells and Chemicals: Second Line of Defense

- Complement proteins
 - A group of at least 20 plasma proteins
 - Activated when they encounter and attach to cells (complement fixation)
 - Damage foreign cell surfaces
 - Release vasodilators and chemotaxis chemicals, cause opsonization

Activated complement proteins attach to pathogen's membrane in step-by-step sequence, forming a membrane attack complex (a MAC attack).

MAC pores in the membrane lead to fluid flows that cause cell lysis.

Cells and Chemicals: Second Line of Defense

- Interferon
 - Proteins secreted by virus-infected cells
 - Bind to healthy cell surfaces to interfere with the ability of viruses to multiply

Cells and Chemicals: Second Line of Defense

- Fever
 - Abnormally high body temperature
 - Hypothalamus heat regulation can be reset by pyrogens (secreted by white blood cells)
 - High temperatures inhibit the release of iron and zinc from the liver and spleen needed by bacteria
 - Fever also increases the speed of tissue repair

- Immune response is the immune system's response to a threat
- Immunology is the study of immunity
- Antibodies are proteins that protect from pathogens

- Three aspects of adaptive defense
 - Antigen specific recognizes and acts against particular foreign substances
 - Systemic not restricted to the initial infection site
 - **Memory** recognizes and mounts a stronger attack on previously encountered pathogens

- Types of Immunity
 - **Humoral immunity** = antibody-mediated immunity
 - Provided by antibodies present in body fluids
 - **Cellular immunity** = cell-mediated immunity
 - Targets virus-infected cells, cancer cells, and cells of foreign grafts

- Antigens (nonself)
 - Any substance capable of exciting the immune system and provoking an immune response
 - Examples of common antigens
 - Foreign proteins (strongest)
 - Nucleic acids
 - Large carbohydrates
 - Some lipids
 - Pollen grains
 - Microorganisms

Self-antigens

- Human cells have many surface proteins
- Our immune cells do not attack our own proteins
- Our cells in another person's body can trigger an immune response because they are foreign
 - Restricts donors for transplants

- Allergies
 - Many small molecules (called haptens or incomplete antigens) are not antigenic, but link up with our own proteins
 - The immune system may recognize and respond to a protein-hapten combination
 - The immune response is harmful rather than protective because it attacks our own cells

- Cells of the adaptive defense system
 - Lymphocytes respond to specific antigens
 - B lymphocytes (B cells)
 - T lymphocytes (T cells)
 - Macrophages help lymphocytes

- Immunocompetent —cell becomes capable of responding to a specific antigen by binding to it
- Cells of the adaptive defense system
 - Lymphocytes
 - Originate from hemocytoblasts in the red bone marrow
 - B lymphocytes become immunocompetent in the bone marrow (remember B for Bone marrow)
 - T lymphocytes become immunocompetent in the thymus (remember T for Thymus)

- Cells of the adaptive defense system (continued)
 - Macrophages
 - Arise from **monocytes**
 - Become widely distributed in lymphoid organs
 - Secrete cytokines (proteins important in the immune response)
 - Tend to remain fixed in the lymphoid organs

Humoral (Antibody-Mediated) Immune Response

- B lymphocytes with specific receptors bind to a specific antigen
- The binding event activates the lymphocyte to undergo clonal selection
- A large number of clones are produced (primary humoral response)

Humoral Immune Response

- Most B cells become plasma cells
 - Produce antibodies to destroy antigens
 - Activity lasts for 4 or 5 days
- Some B cells become long-lived memory cells (secondary humoral response)

Humoral Immune Response

- Secondary humoral responses
 - Memory cells are long-lived
 - A second exposure causes a rapid response
 - The secondary response is stronger and longer lasting

© 2012 Pearson Education, Inc.

Active Immunity

- Occurs when B cells encounter antigens and produce antibodies
- Active immunity can be
 - Naturally acquired during bacterial and viral infections
 - Artificially acquired from vaccines

Passive Immunity

- Occurs when antibodies are obtained from someone else
 - Conferred naturally from a mother to her fetus (naturally acquired)
 - Conferred artificially from immune serum or gamma globulin (artificially acquired)
- Immunological memory does not occur
- Protection provided by "borrowed antibodies"

Passive Immunity

- Monoclonal antibodies
 - Antibodies prepared for clinical testing or diagnostic services
 - Produced from descendents of a single cell line
 - Examples of uses for monoclonal antibodies
 - Diagnosis of pregnancy
 - Treatment after exposure to hepatitis and rabies

Antibodies (Immunoglobulins or Igs)

- Soluble proteins secreted by B cells (plasma cells)
- Carried in blood plasma
- Capable of binding specifically to an antigen

Antibodies

- Antibody structure
 - Four amino acid chains linked by disulfide bonds
 - Two identical amino acid chains are linked to form a heavy chain
 - The other two identical chains are light chains
 - Specific antigen-binding sites are present

Antibodies

- Antibody classes
 - Antibodies of each class have slightly different roles
 - Five major immunoglobulin classes (MADGE)
 - **IgM** —can fix complement
 - **IgA** —found mainly in mucus
 - **IgD** —important in activation of B cell
 - IgG —can cross the placental barrier and fix complement
 - IgE —involved in allergies

Antibodies

- Antibody function
 - Antibodies inactivate antigens in a number of ways
 - Complement fixation
 - Neutralization
 - Agglutination
 - Precipitation

© 2012 Pearson Education, Inc.

Figure 12.16

Cellular (Cell-Mediated) Immune Response

- Antigens must be presented by macrophages to an immunocompetent T cell (antigen presentation)
- T cells must recognize nonself and self (double recognition)
- After antigen binding, clones form as with B cells, but different classes of cells are produced

Cellular (Cell-Mediated) Immune Response

- T cell clones
 - Cytotoxic (killer) T cells
 - Specialize in killing infected cells
 - Insert a toxic chemical (perforin)
 - Helper T cells
 - Recruit other cells to fight the invaders
 - Interact directly with B cells

^{© 2012} Pearson Education, Inc.

Cellular (Cell-Mediated) Immune Response

- T cell clones (continued)
 - Regulatory T cells
 - Release chemicals to suppress the activity of T and B cells
 - Stop the immune response to prevent uncontrolled activity
 - A few members of each clone are memory cells

Organ Transplants and Rejection

- Major types of grafts
 - Autografts tissue transplanted from one site to another on the same person
 - **Isografts** —tissue grafts from an identical person (identical twin)
 - Allografts —tissue taken from an unrelated person
 - Xenografts tissue taken from a different animal species

Disorders of Immunity: Allergies (Hypersensitivity)

Abnormal, vigorous immune responses

- Types of allergies
 - Immediate hypersensitivity
 - Triggered by release of histamine from IgE binding to mast cells
 - Reactions begin within seconds of contact with allergen
 - Anaphylactic shock —dangerous, systemic response

Disorders of Immunity: Allergies (Hypersensitivity)

Types of allergies (continued)

Delayed hypersensitivity

- Triggered by the release of lymphokines from activated helper T cells
- Symptoms usually appear 1–3 days after contact with antigen

Figure 12.20

Disorders of Immunity: Immunodeficiencies

- Production or function of immune cells or complement is abnormal
- May be congenital or acquired
- Includes AIDS (Acquired Immune Deficiency Syndrome)

Disorders of Immunity: Autoimmune Diseases

- Multiple sclerosis —white matter of brain and spinal cord are destroyed
- Myasthenia gravis impairs communication between nerves and skeletal muscles
- **Type I diabetes mellitus** —destroys pancreatic beta cells that produce insulin

Disorders of Immunity: Autoimmune Diseases

• Rheumatoid arthritis —destroys joints

- Systemic lupus erythematosus (SLE)
 - Affects kidney, heart, lung, and skin

• Glomerulonephritis — impairment of renal function

Self Tolerance Breakdown

- Cross-reaction of antibodies produced against foreign antigens with self-antigens
 - Rheumatic fever

Developmental Aspects of the Lymphatic System and Body Defenses

- Except for thymus and spleen, the lymphoid organs are poorly developed before birth
- A newborn has no functioning lymphocytes at birth, only passive immunity from the mother
- If lymphatics are removed or lost, severe edema results, but vessels grow back in time