

Using a regular calendar year of 365 days, determine the probability that at least two people in a room of ten will have the same birthday.

What will the probability be if the number of people in the room increases to 20 ?

What is the probability for all the people (including Mr. Smith) in the classroom today?

What is the minimum number of people needed to statistically guarantee at least a 50% chance of at least two people having the same birthday? What is the minimum number of people needed to guarantee at least a 90% chance?

Although Barack Obama is the $44^{\text {th }}$ President of the United States, he's only the $43^{\text {rd }}$ different person to hold the office; Grover Cleveland served two non-consecutive terms in the late 1800s. Of the 43 different Chief Executives, two of them - Presidents Polk and Harding - shared a birthday, November 2. Is this what you would statistically expect from a group of 43 people, or is there something very strange with these men?

