1
\square
\square
\square
\square
\square
\square
n
\square
\square

\square

Important Concepts:

Factorial

- Factorial: the product of an integer and all of the positive integers below it, excluding zero
- Notation: exclamation point !
- Ex) 4 ! $=4 \cdot 3 \cdot 2 \cdot 1=24$
- Used to compute the number of arrangements possible for a given set of numbers
- 0 ! = 1 (only one way to arrange an empty set)

Important Concepts:

Combinations

- Combination: collection of items, in which the order DOES NOT matter
- Notation: $\binom{n}{r}$ OR ${ }_{n} \mathcal{C}_{r} \quad$ read, "n choose r"

$$
\text { both equal } \begin{aligned}
\frac{n!}{r!(n-r)!} \text { where } n & =\text { the number of things to choose from } \\
r & =\text { how many we are choosing }
\end{aligned}
$$

- An example of when the order wouldn't matter.

You decide to play the lottery and choose a set of numbers. As long as every number is drawn, in any order, you WIN!!!

Important Concepts:

Combinations (contd.)

- Ex) A group of 5 people are taking a trip. 3 are needed to plan the trip. How many different combinations of 3 people are there?

Important Concepts:

Summation

- Summation: the sum of all elements in a sequence
- Notation: Σ
- Ex) Evaluate $\sum_{n=1}^{4} n^{2}$

Binomial Expansions

- $(a+b)^{0}=1$
- $(a+b)^{1}=a+b$
- $(a+b)^{2}=(a+b)(a+b)=a^{2}+2 a b+b^{2}$
- $(a+b)^{3}=(a+b)(a+b)(a+b)=(a+b)\left(a^{2}+2 a b+b^{2}\right)=a^{3}+3 a^{2} b+3 a b^{2}+b^{3}$

Exponents on a terms:	3	2	1	0

- $(x+y)^{4}=x^{4}+4 x^{3} y+6 x^{2} y^{2}+4 x y^{3}+y^{4}$
- $(x+y)^{5}=x^{5}+5 x^{4} y+10 x^{3} y^{2}+10 x^{2} y^{3}+5 x y^{4}+y^{5}$

Pattern of exponents: a: $5 \rightarrow 0 \mathrm{~b}: 0 \rightarrow 5$
If you know the pattern of the exponents on each variable, the binomial theorem essentially just finds you the coefficients on your terms
If n is the degree of the polynomial, there are $n+1$ terms in the expansion

Binomial Theorem

- What if you were asked to simplify $(a+b)^{20}$?
- The Binomial Theorem is a quicker way to expand (multiply out) a binomial that has been raised to some power
$n=$ exponent on the binomial
$\cdot(a+b)^{n}=\sum_{k=0}^{n}\binom{n}{k} a^{n-k} b^{k}$
$k=$ power of a or b (doesn't matter which, binomial expansions are symmetrical)

This just tells us that we are to add together all of the results we get when plugging numbers in for k

Example a.)
- Expand $(a+b)^{5}$ using the binomial theorem

N․․․

(3)

 ERCRQQQ?

 Exaņiea.)

Example a.)

- Expand $(a+b)^{5}$ using the binomial theorem

\square
 \begin{abstract} \end{abstract}

 \qquad
 \qquad
 \qquad
 \qquad
 \qquad

 \qquad

 $$
1
$$

 .

 Example a.)-Expand $(a+b)^{5}$ using the binomial theorem

 Example a.)
-Expand $(a+b)^{5}$ using the binomial theorem Exanpiea.) Example a.)
-Expand $(a+b)^{5}$ using the binomial theorem
 \section*{\section*{Example b.)}}
 \section*{\section*{Example b.)}}

- Expand $(2 x+3 y)^{3}$ using the binomial theorem theorem theorem

(1) MiN)
$)_{4}^{2}$
(l|l|l|3

 (2) th
.

-

-

\qquad

Example c.)

- Find the $4^{\text {th }}$ term in the expansion $(3 x-2)^{10}$

Keep in mind, we want the entire term. This means the coefficient and variables/their exponents!

