Initially, muscles use stored ATP for energy

• ATP bonds are broken to release energy

- Only 4–6 seconds worth of ATP is stored by muscles
- After this initial time, other pathways must be utilized to produce ATP

- Direct phosphorylation of ADP by creatine phosphate (CP)
 - Muscle cells store CP
 - CP is a high-energy molecule
 - After ATP is depleted, ADP is left
 - CP transfers a phosphate group to ADP, to regenerate ATP
 - CP supplies are exhausted in less than 15 seconds
 - About 1 ATP is created per CP molecule

Aerobic respiration

- Glucose is broken down to carbon dioxide and water, releasing energy (about 32 ATP)
- A series of metabolic pathways occur in the mitochondria

 This is a slower reaction that requires continuous oxygen

Carbon dioxide and water are produced

(c) Aerobic pathway

Aerobic cellular respiration

Energy source: glucose; pyruvic acid; free fatty acids from adipose tissue; amino acids from protein catabolism

Anaerobic glycolysis and lactic acid formation

- Reaction that breaks down glucose without oxygen
- Glucose is broken down to pyruvic acid to produce about 2 ATP
- Pyruvic acid is converted to lactic acid

- This reaction is not as efficient, but is fast
 - Huge amounts of glucose are needed
 - Lactic acid produces muscle fatigue

Muscle Fatigue and Oxygen Deficit

- When a muscle is fatigued, it is unable to contract even with a stimulus
- Common cause for muscle fatigue is oxygen debt
 - Oxygen must be "repaid" to tissue to remove oxygen deficit
 - Oxygen is required to get rid of accumulated lactic acid
- Increasing acidity (from lactic acid) and lack of ATP causes the muscle to contract less

Types of Muscle Contractions

Isotonic contractions

- Myofilaments are able to slide past each other during contractions
- The muscle shortens and movement occurs
- Example: bending the knee; rotating the arm

Types of Muscle Contractions

Isometric contractions

- Tension in the muscles increases
- The muscle is unable to shorten or produce movement

• Example: push against a wall with bent elbows

Muscle Tone

Some fibers are contracted even in a relaxed muscle

 Different fibers contract at different times to provide muscle tone and to be constantly ready

Effect of Exercise on Muscles

- Exercise increases muscle size, strength, and endurance
 - Aerobic (endurance) exercise (biking, jogging) results in stronger, more flexible muscles with greater resistance to fatigue
 - Makes body metabolism more efficient
 - Improves digestion, coordination
 - Resistance (isometric) exercise (weight lifting) increases muscle size and strength

Five Golden Rules of Skeletal Muscle Activity

- 1. With a few exceptions, all skeletal muscles **cross at least one joint**.
- 2. Typically, the **bulk of a skeletal muscle lies proximal to the joint crossed.**
- 3. All skeletal muscles have at least two attachments: the origin and the insertion.
- 4. Skeletal muscles can only pull; they never push.
- 5. During contraction, a skeletal muscle insertion moves toward the origin.

Muscles and Body Movements

 Movement is attained due to a muscle moving an attached bone

- Muscles are attached to at least two points
 - Origin
 - •Attachment to a immoveable bone

Insertion

•Attachment to an movable bone

Types of Body Movements

Flexion

- Decreases the angle of the joint
- Brings two bones closer together
- Typical of bending hinge joints like knee and elbow or ball-and-socket joints like the hip

Extension

- Opposite of flexion
- Increases angle between two bones
- Typical of straightening the elbow or knee
- Extension beyond 180° is hypertension

(a) Flexion and extension of the shoulder and knee

(b) Flexion, extension, and hyperextension

© 2012 Pearson Education, Inc.

Types of Body Movements

Rotation

- Movement of a bone around its longitudinal axis
- Common in ball-and-socket joints
- Example is when you move atlas around the dens of axis (shake your head "no")

(c) Rotation

Types of Body Movements

Abduction

Movement of a limb away from the midline

Adduction

- Opposite of abduction
- Movement of a limb toward the midline

(d) Abduction, adduction, and circumduction

Figure 6.13d

Types of Body Movements

Circumduction

- Combination of flexion, extension, abduction, and adduction
- Common in ball-and-socket joints

(d) Abduction, adduction, and circumduction

Figure 6.13d

Special Movements

Dorsiflexion

• Lifting the foot so that the superior surface approaches the shin (toward the dorsum)

Plantar flexion

- Depressing the foot (pointing the toes)
- "Planting" the foot toward the sole

(e) Dorsiflexion and plantar flexion

Special Movements

Inversion

Turn sole of foot medially

Eversion

Turn sole of foot laterally

(f) Inversion and eversion

© 2012 Pearson Education, Inc.

Special Movements

Supination

- Forearm rotates laterally so palm faces anteriorly
- Radius and ulna are parallel

Pronation

- Forearm rotates medially so palm faces posteriorly
- Radius and ulna cross each other like an X

Supination (radius and ulna are parallel)

Pronation (radius rotates over ulna)

(g) Supination (S) and pronation (P)

© 2012 Pearson Education, Inc.

Figure 6.13g

Special Movements

Opposition

 Move thumb to touch the tips of other fingers on the same hand

Figure 6.13h

Types of Muscles

- Prime mover—muscle with the major responsibility for a certain movement
- Antagonist—muscle that opposes or reverses a prime mover
- Synergist—muscle that aids a prime mover in a movement and helps prevent rotation
- Fixator—stabilizes the origin of a prime mover

(a) A muscle that crosses on the anterior side of a joint produces flexion*

Example: Pectoralis major (anterior view)

(b) A muscle that crosses on the posterior side of a joint produces extension*

Example: Latissimus dorsi (posterior view)

(c) A muscle that crosses on the lateral side of a joint produces abduction

Example: Medial deltoid (anterolateral view)

(d) A muscle that crosses on the medial side of a joint produces adduction

Example: Teres major (posterolateral view)

Naming Skeletal Muscles

- By direction of muscle fibers
 - Example: Rectus (straight)

By relative size of the muscle
Example: Maximus (largest)

Naming Skeletal Muscles

- By location of the muscle
 - Example: Temporalis (temporal bone)

By number of origins

• Example: Triceps (three heads)

Naming Skeletal Muscles

- By location of the muscle's origin and insertion
 Example: Sterno (on the sternum)
- By shape of the muscle
 Example: Deltoid (triangular)

- •By action of the muscle
 - Example: *Flexor* and *extensor* (flexes or extends a bone)

