Graph Quadratics in Vertex Form

$$
\text { Vertex Form: } \quad \mathrm{a}(\mathrm{x}-\mathrm{h})^{2}+\mathrm{k}
$$

1. Note if the graph opens up or down: opens up if a >0 and opens down if a <0
2. Find/graph the vertex: The vertex will be the point (h, k) ${ }^{* *}$ THE " h " VALUE FOR THE VERTEX WILL HAVE THE OPPOSITE SIGN OF THE " h " VALUE IN THE QUADRATIC. THE SIGN FOR THE " k " VALUE WILL STAY THE SAME****
3. Find/draw (dotted line) the axis of symmetry $\rightarrow h$ value of the quadratic $x=h$
4. Find two additional points, plot them, and plot their reflected points

- Choose two " x " values, plug them into the expression, and solve for " y " - this will give you a point to plot (x, y)
- Easiest to choose 2 values that are LESS THAN the x coordinate of the vertex, and then reflect those points
- Can make a chart to visualize this best

x	y

5. Connect the points to create a parabola!
** You can check if your parabola has opened correctly (up or down) based on whether or not the " a " value us positive (opens up) or negative (opens down)** Examples:
1) Graph $y=2(x-2)^{2}+1$

2) Graph $y=(x-2)^{2}+3$

3) $\operatorname{Graph} y=-2(x+3)^{2}+3$
4) Graph $y=\frac{1}{2}(x+2)^{2}-3$

