3.1 Exponential Functions and Their Graphs --- Part 1: Exponential Graphs

Exponential Functions

Parent exponential function:

Ex) Evaluate, using your calculator: $f(x)=$

Graphs of Exponential Functions

Ex 1) (from page 219)

- Both functions have positive exponents
- The graphs of both functions increase (for exponential functions, this means that from
 left to right, the y values are getting larger)
- The graph of $g(x)=4^{x}$ increases more rapidly than the graph of $f(x)=2^{x}$

Ex 2) (from page 219)

- Both functions have negative exponents
- The graphs of both functions decrease (for exponential functions, this means that from left to right, the y values are getting smaller)

- The graph of $\mathrm{G}(x)=4^{-x}$ decreases more rapidly than the graph of $\mathrm{F}(x)=2^{-x}$

Characteristics of Exponential Graphs

Transformations:
Horizontal Shifts:

Vertical Shifts:

Axis Flips:

Range:

Range:
Range of an exponential functions graph:

Find the range of the following functions:
Ex 3)
Ex 4)
Ex 5)

Domain:

Domain:
Domain of an exponential functions graph:

X-Intercepts:

x-intercepts:
Finding x-intercepts:
x-intercepts of an exponential functions graph:

Find the x-intercepts of each, if they exist:

y-Intercepts:

$$
y \text {-intercepts: }
$$

Finding y-intercepts:
y-intercepts of an exponential functions graph:

Find the y-intercepts of each:

$y=2^{x}$	
x	y
2	4
1	2
0	1
-1	$1 / 2$
-2	$1 / 4$
-3	$1 / 8$
-4	$1 / 16$

Find the horizontal asymptotes of each:

Vertical Asymptotes:

Exponential functions never have vertical asymptotes! (Vertical asyms. are found by finding what numbers, when plugged in for x , make the function not exist. Since x is in the exponent, it can be anything - positive, negative, fraction.... Any real number!

The breakdown: Steps to graph exponential functions:

These graphs below are examples, using $y=2^{x}$ as the parent function. Remember that there could easily be many more translations within the 2 functions that involve a flip upon an axis

When there is NO FLIP over the \mathbf{x} or \mathbf{y} axis, the graph will resemble it's original parent function.

When there is a flip over the \mathbf{x} axis (the entire function is negated, denoted with a negative in front of the entire function) the graph will resemble an x axis flip of the parent function

When there is a flip over the y axis (the x value is negated) the graph will resemble an y axis flip of the parent function

