Chapter 3 Section 3
 Properties of Logarithms

Change of Base Formula

Let a, b, and x be positive real numbers such that $a \neq 1$ and $b \neq 1$. Then $\log _{a} x$ can be converted to a different base as follows.

$$
\begin{array}{ccc}
\text { Base b } & \text { Base } 10 & \text { Base } e \\
\log _{a} x=\frac{\log _{b} x}{\log _{b} a} & \log _{a} x=\frac{\log x}{\log a} & \log _{a} x=\frac{\ln x}{\ln a}
\end{array}
$$

Properties of Logarithms

Let a be a positive number such that $a \neq 1$, and let n be a real number. If u and v are positive real numbers, the following properties are true.

1. Product Property:

$$
\log _{a}(u v)=\log _{a} u+\log _{a} v
$$

$\ln (u v)=\ln u+\ln v$
2. Quotient Property:
$\log _{a} \frac{u}{v}=\log _{a} u-\log _{a} v$
$\ln \frac{u}{v}=\ln u-\ln v$
3. Power Property:
$\log _{a} u^{n}=n \log _{a} u$
$\ln u^{n}=n \ln u$

