PSSA, Grade 4 Math

Cans of Food

Handscoring
Anchor Set
76. Each of 8 students brought c cans of food for a food drive. They brought a total of 192 cans.

A. Write an equation that can be used to find the number of cans (c) each of the 8 students brought. The variable in the equation may not be on one side of the equation by itself.

B. How many cans did each of the 8 students bring?
76. **Continued.** Please refer to the previous page for task explanation.

The entire class brought a total of 253 cans of food. They put some cans into boxes. The class put the same number of cans into each box. There were only 3 cans of food remaining.

C. Write a possible value for the number of boxes the class filled and the number of cans that were put into each box. Explain why there could be more than one correct response.

number of boxes: ______________

number of cans in each box: ______________
Grade 4 Math
Cans of Food

Assessment Anchor this item will be reported under:
M04.B-O.1 Use the four operations with whole numbers to solve problems.

Specific Anchor Descriptor addressed by this item:
M04.B-O.1.1 Use numbers and symbols to model the concepts of expressions and equations.

Scoring Guide:

<table>
<thead>
<tr>
<th>Score</th>
<th>In this item, the student –</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Demonstrates a thorough understanding of using numbers, symbols, and the four operations to solve problems by correctly solving problems and clearly explaining procedures.</td>
</tr>
<tr>
<td>3</td>
<td>Demonstrates a general understanding of using numbers, symbols, and the four operations to solve problems by correctly solving problems and clearly explaining procedures with only minor errors or omissions.</td>
</tr>
<tr>
<td>2</td>
<td>Demonstrates a partial understanding of using numbers, symbols, and the four operations to solve problems by correctly performing a significant portion of the required task.</td>
</tr>
<tr>
<td>1</td>
<td>Demonstrates minimal understanding of using numbers, symbols, and the four operations to solve problems.</td>
</tr>
<tr>
<td>0</td>
<td>The response has no correct answer and insufficient evidence to demonstrate any understanding of the mathematical concepts and procedures as required by the task. Response may show only information copied from the question.</td>
</tr>
</tbody>
</table>

Non-scorables
B – Blank, entirely erased or written refusal to respond
F – Foreign Language
K – Off-task
U – Unreadable

Top Scoring Student Response And Training Notes:

<table>
<thead>
<tr>
<th>Score</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Student earns 4 points.</td>
</tr>
<tr>
<td>3</td>
<td>Student earns 3.0 – 3.5 points.</td>
</tr>
<tr>
<td>2</td>
<td>Student earns 2.0 – 2.5 points.</td>
</tr>
</tbody>
</table>
| 1 | Student earns 0.5 - 1.5 points.
 OR
 Student demonstrates minimal understanding of using numbers, symbols, and the four operations to solve problems. |
| 0 | Response is incorrect or contains some correct work that is irrelevant to the skill or concept being measured. |
PSSA Math: Cans of Food (Grade 4), Anchor Set

A.

<table>
<thead>
<tr>
<th>What?</th>
<th>Why?</th>
</tr>
</thead>
<tbody>
<tr>
<td>$8 \times c = 192$</td>
<td></td>
</tr>
<tr>
<td>OR</td>
<td></td>
</tr>
<tr>
<td>$c \times 8 = 192$</td>
<td></td>
</tr>
</tbody>
</table>

(1 score point)

1 point for correct answer

B.

<table>
<thead>
<tr>
<th>What?</th>
<th>Why?</th>
</tr>
</thead>
<tbody>
<tr>
<td>24 (cans)</td>
<td></td>
</tr>
</tbody>
</table>

(1 score point)

1 point for correct answer

C.

<table>
<thead>
<tr>
<th>What?</th>
<th>Why?</th>
</tr>
</thead>
</table>
| Answers may vary. Accept any combination whose product is 250:
 • 1 and 250
 • 2 and 125
 • 5 and 50
 • 10 and 25
| Sample Explanation:
 Since there were 253 cans of food and only 3 cans remaining, the students packed $253 - 3 = 250$ cans into the boxes. There could be more than one correct response because the correct response is any two numbers that multiply to get 250. I chose 10 and 25 since $10 \times 25 = 250$. I could also have chosen 5 and 50 since $5 \times 50 = 250$. |
| Sample Responses:
 number of boxes: 10
 number of cans in each box: 25
| OR
 number of boxes: 25
 number of cans in each box: 10 |

(2 score points)

1 point for correct answer

1 point for correct and complete support
76. Each of 8 students brought \(c \) cans of food for a food drive. They brought a total of 192 cans.

A. Write an equation that can be used to find the number of cans \((c) \) each of the 8 students brought. The variable in the equation may not be on one side of the equation by itself.

\[
192 \div c = 8
\]

B. How many cans did each of the 8 students bring?

24 cans

4 A. 1 point – correct answer.
B. 1 point – correct answer.
C. 2 points – correct answer and complete explanation (explains that there are multiple factors of 250). Note that both the number of boxes and the number of cans in each box must be correct to get credit for the answer.
76. **Continued.** Please refer to the previous page for task explanation.

The entire class brought a total of 253 cans of food. They put some cans into boxes. The class put the same number of cans into each box. There were only 3 cans of food remaining.

C. Write a possible value for the number of boxes the class filled and the number of cans that were put into each box. Explain why there could be more than one correct response.

First, I took the remainder of 3 off of 253 to get 250. Since this ended in a zero, I knew it was divisible by 2, 5, or 10. You could have chosen one of those numbers for your number of boxes, or you could have chosen one of those numbers for your number of cans. There are 6 different possibilities. That is why there could be more than one correct response.

number of boxes: \[\boxed{10 \text{ boxes}} \]

number of cans in each box: \[\boxed{25 \text{ cans}} \]
76. Each of 8 students brought \(c \) cans of food for a food drive. They brought a total of 192 cans.

A. Write an equation that can be used to find the number of cans \((c) \) each of the 8 students brought. The variable in the equation may not be on one side of the equation by itself.

\[c \times 8 = 192 \]

B. How many cans did each of the 8 students bring?

Answer: \(24 \) cans

3 A. 1 point – correct answer.
 B. 1 point – correct answer. Note that support is not required and is not assessed.
 C. 1 point – correct answer only; the explanation is insufficient for credit (an additional example does not explain why there could be more than one response).
76. **Continued.** Please refer to the previous page for task explanation.

The entire class brought a total of 253 cans of food. They put some cans into boxes. The class put the same number of cans into each box. There were only 3 cans of food remaining.

C. Write a possible value for the number of boxes the class filled and the number of cans that were put into each box. Explain why there could be more than one correct response.

\[
\begin{align*}
25 \times 3 &= 250 \\
25 \div 10 &= 25, \\ &\text{I know there are other possible solutions for this because } 250 \div 50 = 5.
\end{align*}
\]

number of boxes: \(25\)

number of cans in each box: \(10\)
76. Each of 8 students brought \(c \) cans of food for a food drive. They brought a total of 192 cans.

A. Write an equation that can be used to find the number of cans \((c) \) each of the 8 students brought. The variable in the equation may not be on one side of the equation by itself.

\[8 \times c = 192 \]

B. How many cans did each of the 8 students bring?

24 cans

3 A. 1 point – correct answer.
B. 1 point – correct answer.
C. 1 point – correct answer, incorrect explanation.
76. **Continued.** Please refer to the previous page for task explanation.

The entire class brought a total of 253 cans of food. They put some cans into boxes. The class put the same number of cans into each box. There were only 3 cans of food remaining.

C. Write a possible value for the number of boxes the class filled and the number of cans that were put into each box. Explain why there could be more than one correct response.

There can be more than 1 response because there could be 2 boxes with 130 cans in it with 3 left over.

number of boxes: 2

number of cans in each box: 130
76. Each of 8 students brought \(c \) cans of food for a food drive. They brought a total of 192 cans.

A. Write an equation that can be used to find the number of cans \(c \) each of the 8 students brought. The variable in the equation may not be on one side of the equation by itself.

\[
\frac{8 \text{ students who brought in cans}}{x \text{ number of cans each student brought}} = \frac{192 \text{ cans brought in all}}{192 \text{ cans brought in all}}
\]

B. How many cans did each of the 8 students bring?

\[
\frac{192 \text{ cans brought in all}}{8 \text{ students who brought in cans}} = \frac{24 \text{ cans per student}}{24 \text{ cans per student}}
\]

Each student brought \(\frac{24}{8} \) cans.

2

A. 1 point – correct answer (vertical equation is acceptable).

B. 1 point – correct answer.

C. 0 points – incorrect answer and incorrect explanation.
76. **Continued.** Please refer to the previous page for task explanation.

The entire class brought a total of 253 cans of food. They put some cans into boxes. The class put the same number of cans into each box. There were only 3 cans of food remaining.

C. Write a possible value for the number of boxes the class filled and the number of cans that were put into each box. Explain why there could be more than one correct response.

There could be more than one correct response because there is a remainder. You could have the cans differently because there is a remainder.

number of boxes: 85

number of cans in each box: 4
76. Each of 8 students brought \(c \) cans of food for a food drive. They brought a total of 192 cans.

A. Write an equation that can be used to find the number of cans \(c \) each of the 8 students brought. The variable in the equation may not be on one side of the equation by itself.

\[
\begin{array}{c}
8 \, \longdiv{192 \text{ cans}} \\
\underline{-161} \\
32 \\
\underline{-32} \\
000
\end{array}
\]

B. How many cans did each of the 8 students bring?

I think that each student brought 24 cans because I divided it. I did 192 \(\div \) 8 and got 24. So then I knew that each student brought 24 cans to the food drive, so that's why I think I'm correct.

2 A. 0 points – incorrect answer (no variable).
B. 1 point – correct answer.
C. 1 point – correct answer, insufficient explanation for any credit (removing 3 cans from 250 and/or “50 \times 5 to get 250 R3” does not explain why there could be more than one response).
76. **Continued.** Please refer to the previous page for task explanation.

The entire class brought a total of 253 cans of food. They put some cans into boxes. The class put the same number of cans into each box. There were only 3 cans of food remaining.

C. Write a possible value for the number of boxes the class filled and the number of cans that were put into each box. Explain why there could be more than one correct response.

There can be more than one correct answer because it says they put some cans into boxes. Also, it says there were 3 cans left. So you can divide 253 cans into any number you want with 3 left over. My answer was 50 x 5 to get 250 R3.

\[
\begin{array}{c|c}
50 & 253 \\
\hline
250 & \\
0 & 3 \\
\end{array}
\]

number of boxes: \underline{50} \text{ boxes}

number of cans in each box: \underline{5 \text{ cans}}
A. Write an equation that can be used to find the number of cans (c) each of the 8 students brought. The variable in the equation may not be on one side of the equation by itself.

\[192 \div 8 = ?\]

B. How many cans did each of the 8 students bring?

Each student brought 24 cans, because I did \(192 \div 8\) on my calculator.

2

A. 0 points – incorrect answer. Note that using "?" or another symbol for the variable is OK but the variable can’t be on one side of the equation by itself.
B. 1 point – correct answer.
C. 1 point – correct answer, incorrect explanation.
76. **Continued.** Please refer to the previous page for task explanation.

The entire class brought a total of 253 cans of food. They put some cans into boxes. The class put the same number of cans into each box. There were only 3 cans of food remaining.

C. Write a possible value for the number of boxes the class filled and the number of cans that were put into each box. Explain why there could be more than one correct response.

There can be another answer because you can have 3, or 4 boxes instead of 2. Then put an equal amount of cans in each boxes and still have 3 cans left.

number of boxes: 2

number of cans in each box: 12.5
76. Each of 8 students brought c cans of food for a food drive. They brought a total of 192 cans.

A. Write an equation that can be used to find the number of cans (c) each of the 8 students brought. The variable in the equation may not be on one side of the equation by itself.

$$192 \div 8 = c$$

B. How many cans did each of the 8 students bring? 24 cans of food

2
A. 0 points – incorrect answer (variable on one side by itself).
B. 1 point – correct answer.
C. 1 point – correct answer, incorrect explanation (explains what this student did but not why there could be more than one response).
76. Continued. Please refer to the previous page for task explanation.

The entire class brought a total of 253 cans of food. They put some cans into boxes. The class put the same number of cans into each box. There were only 3 cans of food remaining.

C. Write a possible value for the number of boxes the class filled and the number of cans that were put into each box. Explain why there could be more than one correct response.

There is a different way to figure this out. I did division, but someone else could've done multiplication. If someone else did use multiplication, this could've been how they did it. First, you round 253 to the nearest 10, and you get 250. If you take off the zero, you have 25. Next, if you really know your extended multiplication facts, you'd know that is $10 \times 25 = 250$, by using that taking off the zeros strategy. And then, you notice you're not at 253 yet. There's your remainder 3! This might seem confusing, but if you think hard about it, it's simple!

number of boxes: 10

number of cans in each box: 25
78. Each of 8 students brought \(c \) cans of food for a food drive. They brought a total of 192 cans.

A. Write an equation that can be used to find the number of cans \(c \) each of the 8 students brought. The variable in the equation may not be on one side of the equation by itself.

\[
\frac{\text{students}}{\text{cans}} \times c = 192
\]

\[
C = ?
\]

B. How many cans did each of the 8 students bring?

Each student brought 24 cans.

\[
C = 24
\]

\[
8 \times 24 = 192
\]

2

A. 1 point – correct answer.
B. 1 point – correct answer.
C. 0 points – incorrect answer and incorrect explanation.
76. Continued. Please refer to the previous page for task explanation.

The entire class brought a total of 253 cans of food. They put some cans into boxes. The class put the same number of cans into each box. There were only 3 cans of food remaining.

C. Write a possible value for the number of boxes the class filled and the number of cans that were put into each box. Explain why there could be more than one correct response.

There could be more than one correct response because there are three left over. It is prime.

number of boxes: __2500__

number of cans in each box: __8__
76. Each of 8 students brought \(c \) cans of food for a food drive. They brought a total of 192 cans.

A. Write an equation that can be used to find the number of cans \((c) \) each of the 8 students brought. The variable in the equation may not be on one side of the equation by itself.

\[8 \times (c) = 192 \]

B. How many cans did each of the 8 students bring?

\[8 \times 24 = 192 \]

2 A. 1 point – correct answer.
B. 1 point – correct answer (embedded in the equation).
C. 0 points – incorrect answer and incorrect explanation.
76. **Continued.** Please refer to the previous page for task explanation.

The entire class brought a total of 253 cans of food. They put some cans into boxes. The class put the same number of cans into each box. There were only 3 cans of food remaining.

C. Write a possible value for the number of boxes the class filled and the number of cans that were put into each box. Explain why there could be more than one correct response.

I divided 3 and 253 and got 84 but it says there 3 left so the answer must be 14.

number of boxes: 14

number of cans in each box: 14
76. Each of 8 students brought \(c \) cans of food for a food drive. They brought a total of 192 cans.

A. Write an equation that can be used to find the number of cans \(c \) each of the 8 students brought. The variable in the equation may not be on one side of the equation by itself.

\[\frac{24}{8} \]

B. How many cans did each of the 8 students bring?

\[24 \text{ cans} \]

1 A. 0 points – incorrect answer (no variable).
 B. 1 point – correct answer.
 C. 0 points – incorrect answer and incorrect explanation.
76. **Continued.** Please refer to the previous page for task explanation.

The entire class brought a total of 253 cans of food. They put some cans into boxes. The class put the same number of cans into each box. There were only 3 cans of food remaining.

C. Write a possible value for the number of boxes the class filled and the number of cans that were put into each box. Explain why there could be more than one correct response.

50 boxes
10 cans each box

I did not say how many boxes there was 50 10 cans in each 50 boxes can be just 1 way to respond.

number of boxes: 50
number of cans in each box: 10
76. Each of 8 students brought c cans of food for a food drive. They brought a total of 192 cans.

A. Write an equation that can be used to find the number of cans (c) each of the 8 students brought. The variable in the equation may not be on one side of the equation by itself.

$$c \div 192 = 8$$

B. How many cans did each of the 8 students bring?

24 cans

1
A. 0 points – incorrect answer (backwards).
B. 1 point – correct answer.
C. 0 points – incorrect answer (in explanation) and incorrect explanation.
76. **Continued.** Please refer to the previous page for task explanation.

The entire class brought a total of 253 cans of food. They put some cans into boxes. The class put the same number of cans into each box. There were only 3 cans of food remaining.

C. Write a possible value for the number of boxes the class filled and the number of cans that were put into each box. Explain why there could be more than one correct response.

There could of been 85 boxes and 17 foods in each box. Because if you get more, there would be a remainder of three.

number of boxes: _______________

number of cans in each box: _______________
76. Each of 8 students brought \(c \) cans of food for a food drive. They brought a total of 192 cans.

A. Write an equation that can be used to find the number of cans \((c) \) each of the 8 students brought. The variable in the equation may not be on one side of the equation by itself.

\[
192 \div 8 = c
\]

B. How many cans did each of the 8 students bring?

\[
10 \text{ cans}
\]

0 A. 0 points – incorrect answer (variable on one side by itself).
B. 0 points – incorrect answer.
C. 0 points – incorrect answer and no explanation.
76. **Continued.** Please refer to the previous page for task explanation.

The entire class brought a total of 253 cans of food. They put some cans into boxes. The class put the same number of cans into each box. There were only 3 cans of food remaining.

C. Write a possible value for the number of boxes the class filled and the number of cans that were put into each box. Explain why there could be more than one correct response.

number of boxes: ________

number of cans in each box: _________
76. Each of 8 students brought \(c \) cans of food for a food drive. They brought a total of 192 cans.

A. Write an equation that can be used to find the number of cans (\(c \)) each of the 8 students brought. The variable in the equation may not be on one side of the equation by itself.

Chloe was having a garage sale. She had 8 boxes. She also had 192 toys. How many toys will she put in each box?

B. How many cans did each of the 8 students bring?

\[
\begin{align*}
192 & \div 8 = 24 \\
\text{Answer:} & \quad 24 \text{ cans each student brought in}
\end{align*}
\]
76. Continued. Please refer to the previous page for task explanation.

The entire class brought a total of 253 cans of food. They put some cans into boxes. The class put the same number of cans into each box. There were only 3 cans of food remaining.

C. Write a possible value for the number of boxes the class filled and the number of cans that were put into each box. Explain why there could be more than one correct response.

0. \[\frac{50 \text{ cans}}{25 \text{ boxes}} \]

There could be more than 1 correct response. There could be more than 1 correct response because if you take the 3 away from 253, you would have 250. Then you could divide a bunch of numbers into 250, like 5, 25, 10, and 50. We can do that because 250 ends in a zero and 5, 25, 10, and 50 all go into numbers that end in zero. So there could be 4 correct answers to this equation.

number of boxes: 10

number of cans in each box: 25
76. Each of 8 students brought c cans of food for a food drive. They brought a total of 192 cans.

A. Write an equation that can be used to find the number of cans (c) each of the 8 students brought. The variable in the equation may not be on one side of the equation by itself.

\[
\frac{192}{8} = 24
\]

B. How many cans did each of the 8 students bring?

24 cans
The entire class brought a total of 253 cans of food. They put some cans into boxes. The class put the same number of cans into each box. There were only 3 cans of food remaining.

C. Write a possible value for the number of boxes the class filled and the number of cans that were put into each box. Explain why there could be more than one correct response.
76. Each of 8 students brought c cans of food for a food drive. They brought a total of 192 cans.

A. Write an equation that can be used to find the number of cans (c) each of the 8 students brought. The variable in the equation may not be on one side of the equation by itself.

\[
\frac{4}{2\sqrt{8}}
\]

B. How many cans did each of the 8 students bring?

Each of the 8 students brought 4 cans.
76. **Continued.** Please refer to the previous page for task explanation.

The entire class brought a total of 253 cans of food. They put some cans into boxes. The class put the same number of cans into each box. There were only 3 cans of food remaining.

C. Write a possible value for the number of boxes the class filled and the number of cans that were put into each box. Explain why there could be more than one correct response.

The class put 250 cans of food in boxes.

Number of boxes: 4 boxes

Number of cans in each box: 65 cans
76. Each of 8 students brought c cans of food for a food drive. They brought a total of 192 cans.

A. Write an equation that can be used to find the number of cans (c) each of the 8 students brought. The variable in the equation may not be on one side of the equation by itself.

\[192 \div 8 = ? \]

B. How many cans did each of the 8 students bring?

Each student brought 24 cans each.
76. Continued. Please refer to the previous page for task explanation.

The entire class brought a total of 253 cans of food. They put some cans into boxes. The class put the same number of cans into each box. There were only 3 cans of food remaining.

C. Write a possible value for the number of boxes the class filled and the number of cans that were put into each box. Explain why there could be more than one correct response.

A possible value could be 5 boxes and 50 cans in each box, because $50 \times 5 = 250 + \text{the 3 cans remaining} = 253$. There could be more options because, if you do $253 - 3$ (the 3 is the leftovers) it equals 250. Plus 250 has many different factors and 5 and 50 are 2 of them.

number of boxes: ____5_____

number of cans in each box: ____50____
76. Each of 8 students brought \(c \) cans of food for a food drive. They brought a total of 192 cans.

A. Write an equation that can be used to find the number of cans (\(c \)) each of the 8 students brought. The variable in the equation may not be on one side of the equation by itself.

\[
8 \times c = 192 \\
192 \div 8 = c \\
c = 24
\]

B. How many cans did each of the 8 students bring?

8 students brought 24 cans of food each.
76. **Continued.** Please refer to the previous page for task explanation.

The entire class brought a total of 253 cans of food. They put some cans into boxes. The class put the same number of cans into each box. There were only 3 cans of food remaining.

C. Write a possible value for the number of boxes the class filled and the number of cans that were put into each box. Explain why there could be more than one correct response.

<table>
<thead>
<tr>
<th>boxes</th>
<th>cons.</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>50</td>
</tr>
<tr>
<td>50</td>
<td>5</td>
</tr>
</tbody>
</table>

Because there are many factors for number 250.

number of boxes: 5 boxes

number of cans in each box: 50 cans
76. Each of 8 students brought \(c \) cans of food for a food drive. They brought a total of 192 cans.

A. Write an equation that can be used to find the number of cans (\(c \)) each of the 8 students brought. The variable in the equation may not be on one side of the equation by itself.

\[8 \times c = 192 \]

B. How many cans did each of the 8 students bring?

Each student brought in 24 cans.
76. **Continued.** Please refer to the previous page for task explanation.

<table>
<thead>
<tr>
<th>The entire class brought a total of 253 cans of food. They put some cans into boxes. The class put the same number of cans into each box. There were only 3 cans of food remaining.</th>
</tr>
</thead>
<tbody>
<tr>
<td>C. Write a possible value for the number of boxes the class filled and the number of cans that were put into each box. Explain why there could be more than one correct response.</td>
</tr>
<tr>
<td>There is more than one correct response. The reason is 253 is never divided into the correct answer for this question.</td>
</tr>
</tbody>
</table>

| Number of boxes: | 4 |
| Number of cans in each box: | 3 |
76. Each of 8 students brought \(c \) cans of food for a food drive. They brought a total of 192 cans.

A. Write an equation that can be used to find the number of cans (\(c \)) each of the 8 students brought. The variable in the equation may not be on one side of the equation by itself.

\[I \text{ got 24 cans that the students brought in, this is how I got it:} \]

\[I \text{ divided 192 by 8 and got 24.} \]

B. How many cans did each of the 8 students bring?

\[I \text{ got 2.2 cans by adding 24 to 8 and got} \]

\[32. \]
76. Continued. Please refer to the previous page for task explanation.

The entire class brought a total of 253 cans of food. They put some cans into boxes. The class put the same number of cans into each box. There were only 3 cans of food remaining.

C. Write a possible value for the number of boxes the class filled and the number of cans that were put into each box. Explain why there could be more than one correct response.

There could be more than 1 correct response, but I got 21 boxes and 221 cans in each box.

number of boxes: 21
number of cans in each box: 221
76. Each of 8 students brought c cans of food for a food drive. They brought a total of 192 cans.

A. Write an equation that can be used to find the number of cans (c) each of the 8 students brought. The variable in the equation may not be on one side of the equation by itself.

\[192 \div 8 = 24 \]

B. How many cans did each of the 8 students bring?

24 cans of food
76. **Continued.** Please refer to the previous page for task explanation.

The entire class brought a total of 253 cans of food. They put some cans into boxes. The class put the same number of cans into each box. There were only 3 cans of food remaining.

C. Write a possible value for the number of boxes the class filled and the number of cans that were put into each box. Explain why there could be more than one correct response.

There are two ways the class can fill the boxes with 253 cans and have 3 cans remaining. One way is you can fill 10 boxes with 25 cans in each or 25 boxes with 10 cans in each. Those are two ways to fill the boxes with 3 cans left.

number of boxes: \(\frac{10}{25} \)

number of cans in each box: \(\frac{25}{10} \)
76. Each of 8 students brought c cans of food for a food drive. They brought a total of 192 cans.

A. Write an equation that can be used to find the number of cans (c) each of the 8 students brought. The variable in the equation may not be on one side of the equation by itself.

\[192 \div 8 = c \]

B. How many cans did each of the 8 students bring?

24 cans per student
76. Continued. Please refer to the previous page for task explanation.

The entire class brought a total of 253 cans of food. They put some cans into boxes. The class put the same number of cans into each box. There were only 3 cans of food remaining.

C. Write a possible value for the number of boxes the class filled and the number of cans that were put into each box. Explain why there could be more than one correct response.

\[
\frac{253}{\text{boxes per box}} = \frac{250\text{ cans of food}}{\text{cans remaining}}
\]

There can be more than one answer because if you subtract the three cans remaining and get 250 cans of food, 250 can divide into multiple factors. That is how I know that I am correct for why there can be more than one correct response.

number of boxes: 5

number of cans in each box: 50
76. Each of 8 students brought \(c \) cans of food for a food drive. They brought a total of 192 cans.

A. Write an equation that can be used to find the number of cans \((c) \) each of the 8 students brought. The variable in the equation may not be on one side of the equation by itself.

\[
\frac{c}{8} = 192 \text{ cans}
\]

B. How many cans did each of the 8 students bring?

They brought 24 cans in
76. *Continued.* Please refer to the previous page for task explanation.

The entire class brought a total of 253 cans of food. They put some cans into boxes. The class put the same number of cans into each box. There were only 3 cans of food remaining.

C. Write a possible value for the number of boxes the class filled and the number of cans that were put into each box. Explain why there could be more than one correct response.

\[
\frac{253}{3} \Rightarrow 83 \text{ remainder } 2
\]

\[
\frac{253}{3} \Rightarrow 83 \text{ remainder } 2
\]

Number of boxes: \(126\frac{5}{3}\)

Number of cans in each box: \(33\)
<table>
<thead>
<tr>
<th>Number</th>
<th>Score</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1-1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T1-2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T1-3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T1-4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T1-5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T1-6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T1-7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T1-8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T1-9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T1-10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
PSSA and Keystone Exams
Fall 2015
Item Writing and Handscoring Training Workshops

PSSA, Grade 4
Math

Cans of Food

Handscoring
Training Set 2
76. Each of 8 students brought \(c \) cans of food for a food drive. They brought a total of 192 cans.

A. Write an equation that can be used to find the number of cans (\(c \)) each of the 8 students brought. The variable in the equation may not be on one side of the equation by itself.

\[8 \times c = 192 \]

B. How many cans did each of the 8 students bring?

24 cans
76. Continued. Please refer to the previous page for task explanation.

The entire class brought a total of 253 cans of food. They put some cans into boxes. The class put the same number of cans into each box. There were only 3 cans of food remaining.

C. Write a possible value for the number of boxes the class filled and the number of cans that were put into each box. Explain why there could be more than one correct response.

There could be more than one correct response because 250 (100 x 2.5 below for my explanation of how I got 250) has more than 2 factors that go into it. It is a composite number.

How I got 250: Well if there was 253 cans of food and 3 didn’t fit in a box, you would just drop the three.

number of boxes: 25

number of cans in each box: 10
76. Each of 8 students brought \(c \) cans of food for a food drive. They brought a total of 192 cans.

A. Write an equation that can be used to find the number of cans (\(c \)) each of the 8 students brought. The variable in the equation may not be on one side of the equation by itself.

\[
\frac{c}{8} = 192
\]

B. How many cans did each of the 8 students bring?

24 cans
76. **Continued.** Please refer to the previous page for task explanation.

The entire class brought a total of 253 cans of food. They put some cans into boxes. The class put the same number of cans into each box. There were only 3 cans of food remaining.

C. Write a possible value for the number of boxes the class filled and the number of cans that were put into each box. Explain why there could be more than one correct response.

\[
\begin{array}{c}
\times \frac{50}{5} \\
\hline
50 \times 5 = 250 \\
\end{array}
\]

You could do \(50 \times 5\) for a answer or you could \(51 \times 5\) if you wanted to count the food remaining.

number of boxes: \(50\)

number of cans in each box: \(5\)
76. Each of 8 students brought \(c \) cans of food for a food drive. They brought a total of 192 cans.

A. Write an equation that can be used to find the number of cans \((c) \) each of the 8 students brought. The variable in the equation may not be on one side of the equation by itself.

\[
each \text{ kid brought } 24 \text{ cans because } 8 \times 24 = 192
\]

B. How many cans did each of the 8 students bring?

\[
24
\]
76. **Continued.** Please refer to the previous page for task explanation.

The entire class brought a total of 253 cans of food. They put some cans into boxes. The class put the same number of cans into each box. There were only 3 cans of food remaining.

C. Write a possible value for the number of boxes the class filled and the number of cans that were put into each box. Explain why there could be more than one correct response.

There could be 5 boxes filled with 50 cans because $5 \times 50 = 250$ and they had 3 cans left over.

There could be more than 1 response because you could switch it around like this: 50 boxes filled with 5 cans.

number of boxes: 5

number of cans in each box: 50
76. Each of 8 students brought \(c \) cans of food for a food drive. They brought a total of 192 cans.

A. Write an equation that can be used to find the number of cans \((c) \) each of the 8 students brought. The variable in the equation may not be on one side of the equation by itself.

\[8 + c = 192 \]

B. How many cans did each of the 8 students bring?

184 cans
76. **Continued.** Please refer to the previous page for task explanation.

The entire class brought a total of 253 cans of food. They put some cans into boxes. The class put the same number of cans into each box. There were only 3 cans of food remaining.

C. Write a possible value for the number of boxes the class filled and the number of cans that were put into each box. Explain why there could be more than one correct response.

The number of boxes is 2, but there could be 3 because you could put 50 cans in 1 box and 100 in one outer 100 in the last box and there you go.

number of boxes: __2__

number of cans in each box: __250__
76. Each of 8 students brought c cans of food for a food drive. They brought a total of 192 cans.

A. Write an equation that can be used to find the number of cans (c) each of the 8 students brought. The variable in the equation may not be on one side of the equation by itself.

B. How many cans did each of the 8 students bring?

91 cans
76. **Continued.** Please refer to the previous page for task explanation.

The entire class brought a total of 253 cans of food. They put some cans into boxes. The class put the same number of cans into each box. There were only 3 cans of food remaining.

C. Write a possible value for the number of boxes the class filled and the number of cans that were put into each box. Explain why there could be more than one correct response.

number of boxes: 5 boxes

number of cans in each box: 50 cans
76. Each of 8 students brought c cans of food for a food drive. They brought a total of 192 cans.

A. Write an equation that can be used to find the number of cans (c) each of the 8 students brought. The variable in the equation may not be on one side of the equation by itself.

$$192 \div c = 8$$

B. How many cans did each of the 8 students bring?

24 cans
76. **Continued.** Please refer to the previous page for task explanation.

The entire class brought a total of 253 cans of food. They put some cans into boxes. The class put the same number of cans into each box. There were only 3 cans of food remaining.

C. Write a possible value for the number of boxes the class filled and the number of cans that were put into each box. Explain why there could be more than one correct response.

There could be 1 can in 253 of the boxes. There could be many different responses because you can vary the number of boxes and cans in each box hundreds of times so there could be many ways of how many cans could be grouped between the many boxes: 253

number of boxes: 253

number of cans in each box: 1 Can
76. Each of 8 students brought c cans of food for a food drive. They brought a total of 192 cans.

A. Write an equation that can be used to find the number of cans (c) each of the 8 students brought. The variable in the equation may not be on one side of the equation by itself.

$$192 \div 8 = ?$$

B. How many cans did each of the 8 students bring?

Each of the 8 students brought 24 cans in for the food drive.
76. **Continued.** Please refer to the previous page for task explanation.

The entire class brought a total of 253 cans of food. They put some cans into boxes. The class put the same number of cans into each box. There were only 3 cans of food remaining.

C. Write a possible value for the number of boxes the class filled and the number of cans that were put into each box. Explain why there could be more than one correct response.

There can be more than one correct response because two hundred and fifty three minus three is two hundred and fifty. Two hundred and fifty can be divided by many numbers for example two, five, ten. So it could there can be more than one correct response.

number of boxes: 5

number of cans in each box: 50
76. Each of 8 students brought c cans of food for a food drive. They brought a total of 192 cans.

A. Write an equation that can be used to find the number of cans (c) each of the 8 students brought. The variable in the equation may not be on one side of the equation by itself.

$$8 \times c = 192$$

B. How many cans did each of the 8 students bring?

Each of the eight students brought 24 cans.
Continued. Please refer to the previous page for task explanation:

The entire class brought a total of 253 cans of food. They put some cans into boxes. The class put the same number of cans into each box. There were only 3 cans of food remaining.

C. Write a possible value for the number of boxes the class filled and the number of cans that were put into each box. Explain why there could be more than one correct response.

In this paragraph, I will tell you why there could be more than one correct response. There are two correct responses. Mine being one of them. The second one is 125 boxes and 2 cans in each. This is a correct answer because it's basically mine flip-flopped. Hence, I have told you why there could be more than one correct response.

number of boxes: 2

number of cans in each box: 125
76. Each of 8 students brought \(c \) cans of food for a food drive. They brought a total of 192 cans.

A. Write an equation that can be used to find the number of cans \(c \) each of the 8 students brought. The variable in the equation may not be on one side of the equation by itself.

\[
c = \frac{192}{8}
\]

\[
c = 24
\]

B. How many cans did each of the 8 students bring?

\[
c = 24 \text{ cans}
\]
76. **Continued.** Please refer to the previous page for task explanation.

The entire class brought a total of 253 cans of food. They put some cans into boxes. The class put the same number of cans into each box. There were only 3 cans of food remaining.

C. Write a possible value for the number of boxes the class filled and the number of cans that were put into each box. Explain why there could be more than one correct response.

There were 5 in each box. There could be several answers because it depends on what you divide by. I divide by five which means there are 5 in each of 50 boxes.

number of boxes: __50__

number of cans in each box: __5__
76. Each of 8 students brought \(c \) cans of food for a food drive. They brought a total of 192 cans.

A. Write an equation that can be used to find the number of cans \(c \) each of the 8 students brought. The variable in the equation may not be on one side of the equation by itself.

\[
192 \div c = 8
\]

B. How many cans did each of the 8 students bring?

24 cans
76. Continued. Please refer to the previous page for task explanation.

The entire class brought a total of 253 cans of food. They put some cans into boxes. The class put the same number of cans into each box. There were only 3 cans of food remaining.

C. Write a possible value for the number of boxes the class filled and the number of cans that were put into each box. Explain why there could be more than one correct response.

There could be more than 1 response because if there were three cans left, there would be 250 to divide. 250 has more than 2 factors, so there can be more than 1 response.

Number of boxes: 10

Number of cans in each box: 25
<table>
<thead>
<tr>
<th>Number</th>
<th>Score</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>T2-1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T2-2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T2-3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T2-4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T2-5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T2-6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T2-7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T2-8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T2-9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T2-10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
PSSA, Grade 4
Math

Cans of Food

Handscoring Practice Set*

*Responses in this set do not have true scores. Apply scores based on scoring criteria.
26. Each of 8 students brought c cans of food for a food drive. They brought a total of 192 cans.

A. Write an equation that can be used to find the number of cans (c) each of the 8 students brought. The variable in the equation may not be on one side of the equation by itself.

$$8 \times c = 192$$

B. How many cans did each of the 8 students bring?

24 cans
26. *Continued.* Please refer to the previous page for task explanation.

The entire class brought a total of 253 cans of food. They put some cans into boxes. The class put the same number of cans into each box. There were only 3 cans of food remaining.

C. Write a possible value for the number of boxes the class filled and the number of cans that were put into each box. Explain why there could be more than one correct response.

The problem says there were 3 cans left over, so I did $253 - 3 = 250$.

250 can be divided by 10 so that is the number of boxes. $250 \div 10 = 25$.

There can be more than one correct response because 250 has many factors and if you divide 250 by any factor it will be the number of boxes and the answer will be the number of cans in each box.

number of boxes: 10 boxes

number of cans in each box: 25 cans
76. Each of 8 students brought \(c \) cans of food for a food drive. They brought a total of 192 cans.

A. Write an equation that can be used to find the number of cans (\(c \)) each of the 8 students brought. The variable in the equation may not be on one side of the equation by itself.

\[
\begin{array}{c}
\underline{} \\
8 \mid 192 \\
\underline{-16} \\
\underline{32} \\
\underline{-32} \\
0
\end{array}
\]

B. How many cans did each of the 8 students bring?

Each weight students brought 24 cans.
76. **Continued.** Please refer to the previous page for task explanation.

The entire class brought a total of 253 cans of food. They put some cans into boxes. The class put the same number of cans into each box. There were only 3 cans of food remaining.

C. Write a possible value for the number of boxes the class filled and the number of cans that were put into each box. Explain why there could be more than one correct response.

This is how there could be more than 1 answer. Since it didn't say how many cans were in the box, you could have as many as you want in one box. The number of the cans still had to be even. Depending on how many cans you have, it has to go in evenly in the boxes. Also, you had to make it (number of cans) evenly while still 3 remaining. This is how there could be more than 1 answer.

number of boxes: \(\underline{2} \) boxes

number of cans in each box: \(\underline{125} \) cans
26. Each of 8 students brought c cans of food for a food drive. They brought a total of 192 cans.

A. Write an equation that can be used to find the number of cans (c) each of the 8 students brought. The variable in the equation may not be on one side of the equation by itself.

\[8 \times c = 192 \text{ cans} \]

B. How many cans did each of the 8 students bring?

\[c = 24 \text{ cans} \]
26. **Continued.** Please refer to the previous page for task explanation.

The entire class brought a total of 253 cans of food. They put some cans into boxes. The class put the same number of cans into each box. There were only 3 cans of food remaining.

C. Write a possible value for the number of boxes the class filled and the number of cans that were put into each box. Explain why there could be more than one correct response.

There could be more than one correct response. One response could be 5 boxes and 50 cans in each or 50 boxes and 5 cans in each because it would still be 253 cans in all with 3 left over. Another response could be 6 boxes with 50 in each and three in the last box.

number of boxes: 5
number of cans in each box: 50
26. Each of 8 students brought \(c \) cans of food for a food drive. They brought a total of 192 cans.

A. Write an equation that can be used to find the number of cans \((c) \) each of the 8 students brought. The variable in the equation may not be on one side of the equation by itself.

\[
192 = 8 \times c
\]

B. How many cans did each of the 8 students bring?

\[
24 = c
\]
26. *Continued.* Please refer to the previous page for task explanation.

The entire class brought a total of 253 cans of food. They put some cans into boxes. The class put the same number of cans into each box. There were only 3 cans of food remaining.

C. Write a possible value for the number of boxes the class filled and the number of cans that were put into each box. Explain why there could be more than one correct response.

The way I got my was that there are 24 cans and so the number of cans can be 24 cans in each box and 24 ÷ 8 = 3 so it would be 3 boxes.

number of boxes: 3 boxes
number of cans in each box: 24 cans
26. Each of 8 students brought \(c \) cans of food for a food drive. They brought a total of 192 cans.

A. Write an equation that can be used to find the number of cans (\(c \)) each of the 8 students brought. The variable in the equation may not be on one side of the equation by itself.

\[8 \times c = 192 \]

B. How many cans did each of the 8 students bring?

24 cans
26. **Continued.** Please refer to the previous page for task explanation.

The entire class brought a total of 253 cans of food. They put some cans into boxes. The class put the same number of cans into each box. There were only 3 cans of food remaining.

C. Write a possible value for the number of boxes the class filled and the number of cans that were put into each box. Explain why there could be more than one correct response.

If there are 253 cans, you need to subtract 253 and 3 and get 250 because of the 3 cans remaining. 250 has more than 1 factor. It's factors besides 1 are 10 and 25, and 5 and 50. So, there could be more than 1 correct answer.

number of boxes: 5

number of cans in each box: 50
76. Each of 8 students brought c cans of food for a food drive. They brought a total of 192 cans.

A. Write an equation that can be used to find the number of cans (c) each of the 8 students brought. The variable in the equation may not be on one side of the equation by itself.

$$8 \div 192 = c$$

$$c = 24 \text{ cans each}$$

B. How many cans did each of the 8 students bring?

Each student brought 24 cans to the food drive.
76. **Continued.** Please refer to the previous page for task explanation.

The entire class brought a total of 253 cans of food. They put some cans into boxes. The class put the same number of cans into each box. There were only 3 cans of food remaining.

C. Write a possible value for the number of boxes the class filled and the number of cans that were put into each box. Explain why there could be more than one correct response.

24 cans
87 boxes

\[\frac{84}{3} = 28 \]

\[\frac{53}{2} = 26 \frac{1}{2} \]

Three could be more correct responses because you could have done it in your head, on paper, or a calculator.

Another correct response is a muliply, add subract and divide correctly too.

Those are two other correct responses too.

number of boxes: 87 boxes
number of cans in each box: 27 cans
26. Each of 8 students brought \(c \) cans of food for a food drive. They brought a total of 192 cans.

A. Write an equation that can be used to find the number of cans \((c) \) each of the 8 students brought. The variable in the equation may not be on one side of the equation by itself.

\[8 \times n = 192 \]

B. How many cans did each of the 8 students bring?

Each student brought in 24 cans.
The entire class brought a total of 253 cans of food. They put some cans into boxes. The class put the same number of cans into each box. There were only 3 cans of food remaining.

C. Write a possible value for the number of boxes the class filled and the number of cans that were put into each box. Explain why there could be more than one correct response. There could be 50 boxes of 5 cans. But there are many responses because like with my answer for example you switch the number of boxes with the number of cans, so there could be 5 boxes full of 50 cans in each with three still left over. So there are many answers because you can flip each one around.

number of boxes: 50

number of cans in each box: 5
76. Each of 8 students brought \(c \) cans of food for a food drive. They brought a total of 192 cans.

A. Write an equation that can be used to find the number of cans (\(c \)) each of the 8 students brought. The variable in the equation may not be on one side of the equation by itself.

\[
\begin{align*}
8 \times 24 &= 192 \\
8 \times \frac{4}{3} &= 192 \\
8 \times 31 &= 192 \\
8 \times \frac{32}{4} &= 192
\end{align*}
\]

B. How many cans did each of the 8 students bring?

Each student brought in 24 cans each.
76. *Continued.* Please refer to the previous page for task explanation.

The entire class brought a total of 253 cans of food. They put some cans into boxes. The class put the same number of cans into each box. There were only 3 cans of food remaining.

C. Write a possible value for the number of boxes the class filled and the number of cans that were put into each box. Explain why there could be more than one correct response.

\[\begin{array}{l}
3 \cdot 84 = 252 \\
253 - 252 = 1 \\
\end{array} \]

There can be more than one because you can divide, multiply, or subtract.

number of boxes, \[84 \]

number of cans in each box: \[3 \]
76. Each of 8 students brought \(c \) cans of food for a food drive. They brought a total of 192 cans.

A. Write an equation that can be used to find the number of cans \((c) \) each of the 8 students brought. The variable in the equation may not be on one side of the equation by itself.

\[
8 \times c = 192
\]

\[
c = _
\]

B. How many cans did each of the 8 students bring?

Each student brought 24 cans

\[
\text{each } c = 24
\]
The entire class brought a total of 253 cans of food. They put some cans into boxes. The class put the same number of cans into each box. There were only 3 cans of food remaining.

C. Write a possible value for the number of boxes the class filled and the number of cans that were put into each box. Explain why there could be more than one correct response.

The class could have 5 boxes with 50 cans in each.

50 × 5 = 250

You would have 3 cans left over

number of boxes: 5

number of cans in each box: 50
26. Each of 8 students brought \(c \) cans of food for a food drive. They brought a total of 192 cans.

A. Write an equation that can be used to find the number of cans (\(c \)) each of the 8 students brought. The variable in the equation may not be on one side of the equation by itself.

\[
192 \div (c \times 1) = ?
\]

B. How many cans did each of the 8 students bring?

24 cans
26. **Continued.** Please refer to the previous page for task explanation.

The entire class brought a total of 253 cans of food. They put some cans into boxes. The class put the same number of cans into each box. There were only 3 cans of food remaining.

C. Write a possible value for the number of boxes the class filled and the number of cans that were put into each box. Explain why there could be more than one correct response.

\[
253 - 3 = 250
\]

<table>
<thead>
<tr>
<th>Factors</th>
<th>Product</th>
</tr>
</thead>
<tbody>
<tr>
<td>25 \times 10</td>
<td>250</td>
</tr>
<tr>
<td>10 \times 25</td>
<td>250</td>
</tr>
<tr>
<td>50 \times 5</td>
<td>250</td>
</tr>
<tr>
<td>5 \times 50</td>
<td>250</td>
</tr>
</tbody>
</table>

number of boxes: 25

number of cans in each box: 10
PSSA Math: Cans of Food (Grade 4), Practice Set

Practice Set*

Subject: Math
Item: Cans of Food
Grade: 4

<table>
<thead>
<tr>
<th>Number</th>
<th>Score</th>
<th>Consensus</th>
<th>Annotation</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P-2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P-3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P-4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P-5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P-6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P-7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P-8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P-9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P-10</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Responses in this set do not have true scores. Apply scores based on scoring criteria.
PSSA, Grade 4 Math

Cans of Food

Handscoring Training Sets 1 and 2 True Scores/Annotations
<table>
<thead>
<tr>
<th>Page</th>
<th>Score</th>
<th>Description</th>
</tr>
</thead>
</table>
| 1 | 3 | A. 0 points – incorrect answer.
 | | B. 1 point – correct answer.
 | | C. 2 points – correct answer and complete explanation (explains there are multiple factors of 250). |
| 2 | 1 | A. 0 points – incorrect answer (no variable).
 | | B. 1 point – correct answer.
 | | C. 0 points – incorrect answer and incorrect explanation. |
| 3 | 0 | A. 0 points – incorrect answer.
 | | B. 0 points – incorrect answer.
 | | C. 0 points – incorrect answer and incorrect explanation (removing the 3 remaining cans is insufficient for any credit). |
| 4 | 3 | A. 0 points – incorrect answer (using “?” for the variable is OK, but it can’t be on one side of the equation by itself).
 | | B. 1 point – correct answer.
 | | C. 2 points – correct answer and complete explanation (explains that there are multiple factors of 250). |
| 5 | 4 | A. 1 point – correct answer. Consider that the student went on to solve the equation as seen with “192 ÷ 8 = c” and “c = 24”. “8 × c = 192” is the answer.
 | | B. 1 point – correct answer.
 | | C. 2 points – correct answer and complete explanation (“many factors for the number 250” is sufficient, with or without the table). |
| 6 | 2 | A. 1 point – correct answer.
 | | B. 1 point – correct answer.
 | | C. 0 points – incorrect answer and incorrect explanation. |
| 7 | 0 | A. 0 points – incorrect answer.
 | | B. 0 points – incorrect answer. Note that if part B were blank, credit would be given for “24” found in part A.
 | | C. 0 points – incorrect answer and incorrect explanation. |
| 8 | 2 | A. 0 points – incorrect answer (no variable).
 | | B. 1 point – correct answer.
 | | C. 1 point – correct answer(s), the explanation is insufficient for any credit (another example only, lacking explanation of why. See SG-2). Note that if multiple answers are given, all must be correct for credit. |
| 9 | 3 | A. 0 points – incorrect answer (variable other than c is OK, but can’t be on one side of the equation by itself).
 | | B. 1 point – correct answer.
 | | C. 2 points – correct answer and complete explanation. |
| 10 | 2 | A. 1 point – correct answer (vertical formula).
 | | B. 1 point – correct answer.
<pre><code> | | C. 0 points – incorrect answer and incorrect explanation. |
</code></pre>
<table>
<thead>
<tr>
<th>Page</th>
<th>Score</th>
<th>Description</th>
</tr>
</thead>
</table>
| 1 | 4 | A. 1 point – correct answer.
B. 1 point – correct answer.
C. 2 points – correct answer and complete explanation. |
| 2 | 2 | A. 0 points – incorrect answer.
B. 1 point – correct answer.
C. 1 point – correct answer, incorrect explanation. |
| 3 | 2 | A. 0 points – incorrect answer.
B. 1 point – correct answer.
C. 1 point – correct answer, insufficient explanation for any credit (additional example only, lacking explanation of why). |
| 4 | 0 | Nothing is correct for credit in any part. In part A, “+” is clearly seen (and confirmed by the answer given in part B). |
| 5 | 1 | A. 0 points – incorrect answer.
B. 0 points – incorrect answer.
C. 1 point – correct answer, the explanation is insufficient for any credit. |
| 6 | 2 | A. 1 point – correct answer.
B. 1 point – correct answer.
C. 0 points – incorrect answer and incorrect explanation. |
| 7 | 3 | A. 0 points – incorrect answer (variable on one side of the equation).
B. 1 point – correct answer.
C. 2 points – correct answer and complete explanation. |
| 8 | 3 | A. 1 point – correct answer.
B. 1 point – correct answer.
C. 1 point – correct answer only; the explanation is insufficient for any credit. |
| 9 | 2 | A. 0 points – incorrect answer.
B. 1 point – correct answer.
C. 1 point – correct answer only; the explanation is insufficient for any credit. |
| 10 | 4 | A. 1 point – correct answer.
B. 1 point – correct answer.
C. 2 points – correct answer and complete explanation. |