\qquad Mod \qquad

Fill in the first quadrant of the Unit Circle. Each additional quadrant that is filled in correctly will be worth 1 bonus point each. (You are going to need to know various values from all 4 quadrants to complete some of the questions on the remainder of your test.)

Show all your work. Keep your answers exact - simplified radical form - unless directed otherwise.

1. Sketch each angle in standard position.
a. -290°

b. 4 radians

2. For each angle, state a) the quadrant in which the terminal side lies, b) one positive coterminal angle, and c) one negative coterminal angle. If angle is in degrees, give answers in degrees. If in radians, give answers in radians.
-30°
a)
b)
c)
$\frac{3 \pi}{4}$
a)
b)
c)
3. Evaluate sine, cosine, and tangent for the angle in standard position whose terminal side contains the given point.
a) $(-3,4)$
b) $(-2,3)$

$$
\sin \theta=
$$

$$
\sin \theta=
$$

$\cos \theta=$ \qquad
$\cos \theta=$ \qquad
$\tan \theta=$ \qquad

$$
\tan \theta=
$$

5. Use the triangle to find the exact values of the six trig functions of θ.

$$
\begin{array}{ll}
\sin \theta= & \sec \theta= \\
\tan \theta= & \csc \theta= \\
\cot \theta= & \cos \theta=
\end{array}
$$

6. Suppose θ is an angle in standard position. Under each of the given conditions, in which quadrant does the terminal side lie?
a) $\cos \theta<0, \tan \theta<0$
b) $\cos \theta>0, \sin \theta<0$
7. Convert the following radian measures to degrees.
8. Convert the following degree measures to radians. Keep in terms of π.
a) $\frac{\pi}{9}$
a) 30° b) -150°
b) $\frac{2 \pi}{3}$

Evaluate the 3 trig functions for each of the angles in standard position. No decimal approximations.
9. 60°
$\sin \theta=$ \qquad
$\cos \theta=$ \qquad
$\tan \theta=$ \qquad $\tan \theta=$ \qquad
11. π
13. $\frac{7 \pi}{4}$
$\sin \theta=$ \qquad
$\cos \theta=$ \qquad
$\tan \theta=$ \qquad
10. -210°
$\sin \theta=$ \qquad $\cos \theta=$ \qquad
$\tan \theta$
$\sin \theta=$ \qquad
$\cos \theta=$ \qquad
$\tan \theta=$ \qquad
14. Use trigonometric identities to transform the left side of the equation to the right side. (You want both sides to be equivalent)

$$
\cos \theta \sec \theta=1
$$

