Algebra 2/Trigonometry – H 2016 Trig – Chapter 4, sections 1-4 REVIEW

Name_____ Mod_____

Fill in the first quadrant of the Unit Circle. Each additional quadrant that is filled in correctly will be worth 1 bonus point each. (You are going to need to know various values from all 4 quadrants to complete some of the questions on the remainder of your test.)

Show all your work. Keep your answers exact - simplified radical form - unless directed otherwise.

1. Sketch each angle in standard position.

2. For each angle, state a) the quadrant in which the terminal side lies, b) one *positive* coterminal angle, and c) one *negative* coterminal angle. If angle is in degrees, give answers in degrees. If in radians, give answers in radians.

-30°	a)	b)	c)
$\frac{3\pi}{4}$	a)	b)	c)

4. Evaluate sine, cosine, and tangent for the angle in standard position whose terminal side contains the given point.

a) (-3, 4)	b) (-2, 3)
$\sin \theta = $	$\sin \theta = $
$\cos \theta = $	$\cos \theta = $
$\tan \theta = _$	$\tan \theta = $

5. Use the triangle to find the exact values of the six trig functions of θ .

6. Suppose θ is an angle in standard position. Under each of the given conditions, in which quadrant does the terminal side lie?

a) $\cos \theta < 0$, $\tan \theta < 0$ b) $\cos \theta > 0$, $\sin \theta < 0$

- 7. Convert the following radian measures to degrees.
- Convert the following degree measures to radians. Keep in terms of *π*.
- a) $\frac{\pi}{9}$ b) $\frac{2\pi}{3}$ a) 30° b) -150°

Evaluate the 3 trig functions for each of the angles in standard position. No decimal approximations.

9. 60°	10210°
$\sin \theta = $	$\sin \theta = $
$\cos \theta = $	$\cos \theta = $
$\tan \theta = $	$\tan \theta = $
11. π	13. $\frac{7\pi}{4}$
$\sin \theta = $	$\sin \theta = $
$\cos \theta = $	$\cos \theta = _$
$\tan \theta = _$	$\tan \theta = $

14. Use trigonometric identities to transform the left side of the equation to the right side. (You want both sides to be equivalent)

 $\cos\theta \sec\theta = 1$