Sequence and Series Review Chapter 9 Sections 1 – 4

Section 1: Sequences and Series

> Use sequence notation to write the terms of sequences.

> Use factorials.

> Use summation notation to write sums.

Examples:

1. Write the first 5 terms of the sequence.

a.
$$a_n = (-1)^n \left(\frac{n}{n+1}\right)$$

b.
$$a_n = 2 - \frac{4}{n}$$

2. Find the indicated term of the sequence.

a.
$$a_n = \frac{8n}{n+1}$$
, find a_{13}

3. Write the expression for the apparent nth term of the sequence.

a.
$$\frac{3}{2}, \frac{4}{4}, \frac{5}{8}, \frac{6}{16}, \frac{7}{32}, \cdots$$
 $a_n =$

b.
$$-4,8,-12,16,-20,...$$
 $a_n =$

4. Simplify the factorial expression.

a.
$$\frac{3!}{7!}$$

5. Find the sum.

a.
$$\sum_{i=1}^{7} (24-3i)$$

b.
$$\sum_{i=1}^{5} \frac{3}{i^2 - 2}$$

c.
$$\sum_{i=1}^{\infty} 3 \left(\frac{1}{10} \right)^{i}$$

Other practice can be found on pages 649-650, problems 1-26, 37-49, 59-84, 99-106 and page 715, problems 1-18, 21-24

Section 2: Arithmetic Sequences and Partial Sums

- > Recognize, write and find the *n*th term of arithmetic sequences.
- Find *n*th partial sums of arithmetic sequences.

Examples:

- 1. Determine if the sequence is arithmetic. If so, find the common difference.
 - a. 97, 94, 91, 88, 85, ...
 - b. 1, 2, 4, 8, 16,...
- 2. Write the first 5 terms of the arithmetic sequence.

a.
$$a_n = 2 - 5n$$

- 3. Find the formula for a_n for the arithmetic sequence.
 - a. $a_1 = 7$, d = 4
 - b. $5, \frac{11}{2}, 6\frac{13}{2}, 7, \dots$
 - c. $a_5 = 190$, $a_{10} = 115$
- 4. Given $a_1 = 3$, $a_2 = 13$, find a_{21}
- 5. Find the partial sum.
 - a. 40, 37, 34, 31,..., find S_{12}
 - b. $\sum_{n=1}^{30} 6n$
- 6. Consider a job offer with the starting salary of \$37,500 and an annual raise of \$2,000.
 - a. Determine the salary the 10th year of employment.
 - b. Determine the total compensation from the company through six full years of employment.

Other practice can be found on pages 659-660, problems 1-48, 57-86 and pages 715-716, problems 27-48

Section 3: Geometric Sequences and Series

- Recognize, write and find the *n*th terms of geometric sequences.
- \triangleright Find the *n*th partial sums of geometric sequences.
- > Find the sum of an infinite geometric series.

Examples:

- 1. Determine whether the sequence is geometric. If so, find the common ratio.
 - a. 7, 21, 63, 189, ...
 - b. 36, 27, 18, 9, ...
- 2. Write the first five terms of the geometric sequence.

a.
$$a_1 = 6$$
, $r = \frac{1}{2}$

- 3. Write an expression for the nth term of the geometric sequence. Then find the indicated term.
 - a. $5, 15, 45, 135, \dots$ find a_{12}
 - b. $a_2 = 12$, $a_5 = 768$, find a_{10}
- 4. Find the sum of the finite geometric sequence.

a.
$$\sum_{n=1}^{9} 25 \left(-\frac{1}{2}\right)^{n-1}$$

5. Find the sum of the infinite geometric sequence.

a.
$$\sum_{n=0}^{\infty} 3(0.2)^n$$

6. A deposit of \$250 is made on the first day of each month in a savings account that pays 5% interest compounded monthly. Find the balance after 8 years. Example and formula can be found on page 668.

Other practice can be found on pages 669-671, problems 1-20, 27-42, 53-72, 79-88, 103 and page 716, problems 1-76, 78.

Section 4: Mathematical Induction

- \triangleright Use mathematical induction to prove statements involving a positive integer n.
- > Find the sums of powers of integers.

Examples:

1. Use mathematical induction to prove the formula for every positive integer n.

a.
$$2^3 + 4^3 + 6^3 + \dots + (2n)^3 = 2n^2(n+1)^2$$

2. Find the sum using the formulas for the sums of powers of integers.

a.
$$\sum_{n=1}^{15} (2n^3 + 4n)$$

Other practice can be found on page 716, problems 79, 80, 87-90.