1.7 Transformations of Functions

There are 2 categories of graph transformations: rigid:
and non-rigid:

Rigid transformation: Vertical and Horizontal Shifts

Many functions have graphs that are a simple shift of their parent function (those covered in 1.6).

Vertical and Horizontal Shifts

Let c be a positive real number. Vertical and horizontal shifts in the graph of $y=f(x)$ are represented as follows.

1. Vertical shift c units upward: $\quad h(x)=f(x)+c$
2. Vertical shift c units downward: $\quad h(x)=f(x)-c$
3. Horizontal shift c units to the right: $\quad h(x)=f(x-c)$
4. Horizontal shift c units to the left: $\quad h(x)=f(x+c)$

Ex 1) To obtain the graph of $h(x)=x^{2}+2$ would shift the graph of $f(x)=x^{2}$ upward 2 units

Ex 2) To obtain the graph of $g(x)=(x-2)^{2}$ we shift the graph of $f(x)=x^{2}$ to the right 2 units

Some graphs can be obtained from combinations of vertical and horizontal shifts. When graphing utilizing these shifts, it does not matter if you shift horizontally or vertically first. (this is true if the only transformations are horizontal and/or vertical)

Examples: Describe how the graph of each function is shifted compared to the graph of its parent function. (Roughly) sketch the function on the same graph of its parent function.
a) $f(x)=$
b.) $g(x)=$
c.) $h(x)=$

Rigid transformation: Reflections

A $2^{\text {nd }}$ common type of transformation is a reflection. For example, if you consider the x -axis to be a mirror, the graph of $h(x)=-x^{2}$ is the mirror image, or reflection, of the graph of $(x)=x^{2}$, as shown below to the right.
Reflections must be done before horizontal and/or vertical shifts when graphing using transformations.

Reflections in the Coordinate Axes

Reflections in the coordinate axes of the graph of $y=f(x)$ are represented as follows.

1. Reflection in the x-axis:
$h(x)=-f(x)$
2. Reflection in the y-axis:
$h(x)=f(-x)$

Examples: Describe how the graph of each function is shifted compared to the graph of its parent function. (Roughly) sketch the function on the same graph of its parent function.
d.) $k(x)=$

e.) $m(x)=$

Examples: Compare the graphs of f, g and h with the graph of their parent functions below each. Write each function $\&$ state domain and range.
f.)

g.)

h.)

Parent graph:

Parent graph:

Non-Rigid transformation: stretches and shrinks

- Vertical stretch
$c f(x), c>1$
Ex) $f(x)=2 x^{2}$
- Vertical shrink
$c f(x), 0<c<1$
Ex) $g(x)=\frac{1}{3}|x|$
- Horizontal shrink
$f(c x), c>1$
Ex) $k(x)=(6 x)^{3}$
- Horizontal stretch
$f(c x), 0<c<1$
Ex) $m(x)=\left(\frac{1}{2} x\right)^{3}$

Where c is a constant

$y=f(x)$	$y=f(x)$	$y=f(x)$
$y=2 f(x)$ vertical stretch; y-values are doubled; points get farther away from x-axis	$y=\frac{f(x)}{2}$ vertical shrink; y-values are halved; points get closer to x-axis	$y=f(2 x)$ horizontal shrink; x-values are halved; points get closer to y-axis

Here is the thought process you should use when asked about (for example) the graph of $y=3 f(x)$

1. Consider the original equation/graph of the parent function
2. Consider the new equation, $y=3 f(x)$
3. Interpretation of new equation:

[^0]
Order in Which to Preform Transformations of Graphs

If you are graphing a function based upon translations of its parent function, here is the order in which to perform the transformations (if there are many):

Steps for a Sequence of Transformations

Apply the following steps when graphing by hand a function containing more than one transformation. Apply the transformations in this order:

1. Start with parentheses (look for possible horizontal shift)
(This could be a vertical shift if the power of x is not 1.)
2. Deal with multiplication (stretch or compression)
3. Deal with negation (reflection)
4. Deal with addition/subtraction (vertical shift)

These steps are basically just following order of operations. (parenthesis, mult/divide, negation, add/subtract)

As stated earlier, if the only transformations are horizontal and vertical, it does not matter which order you preform each. If there are horizontal/vertical shifts and reflections, reflect first. If the combination differs from these, refer to the chart above.

[^0]: ** Remember, unless you are asked to graph a function in a specific way, which you rarely will be unless its linear, the best bet is to create a chart of x and y values, and find points to plot by choosing x values to plug in and solve to get y values. It is even easier to graph functions if you know the graphs of their parent functions, as well as the transformations. ****

