4.1 Radians and Degree Measure

Angles

- One ray (______) is fixed, and the other ray (_______) is rotated about the vertex.
- An angle is in **<u>standard position</u>** if:
- The **angle measure** is:
 - <u>Positive</u> if:
 - <u>Negative</u> if:
 - The terminal side can make more than one complete rotation (they can be more than 360° or "less than" 360°)
- Conterminal angles:
 - How to find conterminal angles
 - When angles are measured in degrees:
 - When angles are measured in radians:

Examples: Draw the angles in standard form. Then, create and label a conterminal angle for each.

Radians and Radian Measure

Angles can be measured in radians, as well as degrees. π is the symbol that represents radians.

• <u>Radian:</u>

Quadrants

• <u>Circumference:</u>

- Since $2\pi = 6.28 \rightarrow 2\pi r = 6.28r \rightarrow$ there's just over 6 radius lengths in one full circle
- One full revolution around a circle has a radian measure of 2π , and from that we can obtain:
 - $\circ \frac{1}{2}$ revolution:
 - \circ ¹/₄ revolution:
 - $\circ \frac{1}{6}$ revolution:

Degree and Degree Measure

- 360° =
- 180° =

• Conversions between radians and degrees:

- Degrees to radians:
- Radians to degrees:

Ex) Convert to degrees: f.)

Ex g) Find 3 conterminal angles for

- Complimentary Angles:
- <u>Supplementary Angles:</u>

Examples: Find the supplementary and complementary angles for each if they exist.

h.) i.) j.) k.)