Put each quadratic in "standard form" by completing the square. Then, state the vertex and axis of symmetry and graph the quadratic. Plot at least 5 points, including the vertex. All work must be shown.

1.)
$$y = x^2 - 2x - 5$$

2.)
$$y = x^2 - 6x + 5$$

3.)
$$y = x^2 + 4x$$

- 4.) Determine if the parabola has a maximum or minimum, and state the specific value. $y = -x^2 14x 59$
- 5.) Describe the right-hand and left-hand behavior of the graph of each function.

a.)
$$-x^2 + 6x - 5$$

b.)
$$\frac{1}{2}x^3 + 6x$$

c.)
$$-2x^7 + 6x - 19$$

6.) Find all of the real zeros of each function.

a.)
$$f(x) = 2x^4 - x^3 - 2x^2 + x$$

b.)
$$g(x) = 3x^4 - 11x^2 + 6$$

7.) Write a polynomial function whose zeros are given.

a.)
$$5, -1, 0$$

b.)
$$-3, -\frac{1}{3}, 5$$

8.) Divide $x^3 + 3x^2 - 4x - 12$ by $x^2 + x - 6$ using polynomial long division.

9.) Divide $4x^2 - 1$ by x + 2 using polynomial long division.

10.) Divide $3x^3 + 2x - 11$ by x - 3 using synthetic division.

11.) Divide $2x^3 - 3x^2 - 5x - 12$ by x - 3 using synthetic division.