Show all of your work as you solve each.

1. The length of a rectangle is 6 cm less than twice its width. Find the dimensions of the rectangle if its area is $108 \mathrm{~cm}^{2}$.
2. Find the dimensions of a rectangle whose perimeter is 40 in and whose area is $96 \mathrm{in}^{2}$.
3. The flight of a particular soccer kick can be modeled by the function $y=-0.014 x(x-35)$ where x is the horizontal distance in yards and y is the height in yards.
a. How many yards away from the player does the soccer ball land?
b. What is the maximum height in yards of the soccer ball?
4. A basketball player passes the ball to a teammate. The ball leaves the player's hand 5 feet above the ground and has an initial vertical velocity of 55 feet per second. The teammate catches the ball when it returns to a height of 5 feet. How long is the ball in the air?
5. You are playing tennis with a friend. The path of the tennis ball after you hit the ball can be modeled by the graph of the equation $y=-0.005 x^{2}+0.17 x+3$ where x is the horizontal distance (in feet) from where you hit the ball and y is the height of the ball (in feet) above the court.
a. What is the maximum height reached by the tennis ball? Round to the nearest tenth of a foot.
b. Suppose you are standing 30 feet from the net, which has a height of 3 feet. Will the ball clear the net? Explain.
c. If your friend does not hit the ball back to you, how far from you does the ball strike the ground?
6. Find 5 consecutive integers such that the square of the third decreased by the square of the second is equal to the product of the first and last.
7. A bottle rocket travels along a parabolic path modeled by $y=-\frac{3}{7}(x-7)^{2}+21$ where x is the horizontal distance in yards from the impact point and y is the height in yards.
a. How far did the bottle rocket travel?
b. What was the maximum height of the bottle rocket?
