<u>Unit Five</u>: Chapter 6 ~ Chemical Bonding

Metallic Bonds

Occur between atoms	(all the	or	metals
The en			
Vacant orbitals ()			
electrons of the atom to		throu	ghout the entire metal
Valence electrons in metallic bond	ds are		meaning they do not
	bu	it move	about the

	can be defined as the chemical bonding that results
from ₋	
Metal	lic bondsresult in chemical compounds.
-	erties of Metallic Bonds:
	a wide range of light frequencies and are therefore
0	the ability of a substance to be hammered into
0	: the ability of a substance to be drawn out to

Metallic Sea of Electrons

Electrons are not bonded to any particular atom and are free to move about in the solid.

Ions

Particles with a	(
	– one atom with a charge
o Examples:	
	– two or more atoms with a charge
o Examples:	
nical Bond	
A	is a mutual electrical
between the	of differen
atoms that the a	toms together.
Energy force between atoms i	in their valence area as a result of
Nature favors arrangements v	with potential energy.
o Atoms are	by themselves and have
	then when they are
Results in a	

Types of Chemical Bonds

	Bonds		
	Bonds		
0 _			bonds
° _			bonds
	Nonpolar Covalent	Polar Covalent A: B	Ionic B
	A.B	M. D	() ()
	ermine bond type us	oools.birdville.k12.tx.us/cms/lib2/TX01000797/Centricity/Doo	nain/912/ChemLessons/Lessons/Bonding/image015.jpg
		oools.birdville.k12.tx.us/cms/lib2/TX01000797/Centricity/Doo	nain/912/ChemLessons/Lessons/Bonding/image015.jpg
	ermine bond type us	oools.birdville.k12.tx.us/cms/lib2/TX01000797/Centricity/Doo	nain/912/ChemLessons/Lessons/Bonding/image015.jpg
0 1	ermine bond type us	esools.birdville.k12.tx.us/cms/lib2/TX01000797/Centricity/Doi	nain/912/ChemLessons/Lessons/Bonding/image015.jpg
0 1	ermine bond type us	e:	nain/912/ChemLessons/Lessons/Bonding/image015.jpg
0 1	ermine bond type us	e:	nain/912/ChemLessons/Lessons/Bonding/image015.jpg

Electronegativity Values																			
	1	of the Elements											18						
	1							•										2	
1	Н																	He	1
	2.1	2											13	14	15	16	17	-	
	3	4											5	6	7	8	9	10	
2	Li	Be											В	C	N	O	F	Ne	2
	1.0	1.5											2.0	2.5	3.0	3.5	4.0	-	
	11	12											13	14	15	16	17	18	
3	Na	Mg											Al	Si	P	S	Cl	Ar	3
	0.9	1.2	3	4	. 5	6	7	8	9	10	11	12	1.5	1.8	2.1	2.5	3.0	-	ı
	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	
4	K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	\mathbf{Br}	Kr	4
	0.8	1.0	1.3	1.5	1.6	1.6	1.5	1.8	1.8	1.8	1.9	1.6	1.6	1.8	2.0	2.4	2.8	3.0	
	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54	
5	Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe	5
	0.8	1.0	1.2	1.4	1.6	1.8	1.9	2.2	2.2	2.2	1.9	1.7	1.7	1.800	1.9	2.10	2.5	2.6	
	55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86	
6	Cs	Ba	La	★ Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn	6
	0.7	0.9	1.1	1.3	1.5	1.7	1.9	2.2	2.2	2.2	2.4	1.9	1.8	1.8	1.9	2.0	2.2	2.4	
	87	88	89	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	
7	\mathbf{Fr}	Ra	Ac 4	▲ Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Nh	Fl	Мc	Lv	Ts	Og	7
	0.7	0.9	1.1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	ı
					58	59	60	61	62	63	64	65	66	67	68	69	70	71	ı
											_								
				6 🛨	Ce	Pr 1.1	Nd	Pm 1.1	Sm 1.2	Eu	Gd 1.2	Tb	Dy	Ho 1.2	Er	Tm 1.3	Yb 1.1	Lu 1.3	6
					90	91	92	93	94	95	96	97	98	99	100	101	102	103	
				7	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr	7
				_	1.3	1.5	1.4	1.4	1.3	1.3	1.3	1.3	1.3	1.3	1.3	1.3	1.3	-	"
											-				•				,

Ionic Bond

•	An is a chemical bond that results from the
	between large numbers of
•	Forms by the of valence electrons from a to a
	o Metals electrons →
	○ Nonmetals electrons →
•	Ionic bonds have anof

•	bond type	
o "The bigger the diff	ference the stronger the bond."	
ProducesMost exist as	solids	
	twork of positive and	
_	mutually to one another.	
Covalent Bond		
• A	results from the	of electron
between	n atoms.	
 Covalent bonds can be 	or	
Polar Covalent Bond		
• A	is a covalent bond in whic	h the bonded atoms
have an	for the	_ valence electrons
in	orbitals between	·
• Causes	on polar molecules.	6

Polar covalent bonds have an	Oxygen -	
of	Hydrogen Hydrogen	δ- Ο Η δ+ δ+
Produces	Electrons from hydrogen (a) Electron shells in a water molecule http://eweb.furman.edu/~www.	(b) Distribution of partial charges in a water molecule
polar Covalent Bond	is a covalent bond in wh	ich the bonded
atoms have an attra	action for the va	llence electrons
in orbitals	s between	·
This results in distribucharge.	Oxygen Molecule (O ₂)	H H
 charges anywhe	ere on the molecule.	
Nonpolar covalent bonds have an		
of .		

	uces
•	A group of that are held together by
0	,
	The collection of atoms from which an compound's formula can be established.
•	particle of ancompound.
0	
	for and for number of

_____ bond type

0	atoms of the		with
	a cova	alent bond.	
Diatomic	Molecules		
•		•	
•		•	
•		•	
•			
Why Do (hemical Bonds Form?		
• Octet	rule		
0	An atom has	of electrons (e-) in its	shell
0	Occurs by elements		electrons
0	Results in an atom having a	configui	ation
0	Results in	and	
	for an atom with a	valence shell	

ctet Exceptions
• –e- maximum
• –e- maximum
octet – incorporates orbitals in addition to just
Certain atoms when bonded to can hold more than
e- in their valence shell
ewis Electron Dot Diagrams
• Showbetween atoms using
for (nucleus and inner-electrons) and for
·
Begin with the and their corresponding

o ... end with a _____ showing what happened to the valence

electrons in the _______.

Lewis Electron Dot Diagrams

• <u>Ex. 3</u>:

• IONIC B	ONDS:				
0 1.	Draw			for each eleme	ent in
co	empound (both	6	and).	
o 2.	Draw an	·			
0 3.	Draw	by placing	in		showing
tra	ansfer of valence elec	ctrons and cor	responding	0	n the ion
• <u>Ex. 1</u> :					
• <u>Ex. 2</u> :					

11

• <u>Ex. 4</u>:

• <u>Ex. 5</u>:

• <u>Ex. 6</u>:

• <u>Ex. 7</u>:

• <u>Ex. 8</u>:

• <u>Ex. 9</u>:

• <u>Ex. 10</u>:

• <u>Ex. 11</u>:

• <u>Ex. 12</u>:

Lattice Structure (Crystal Lattice)

• crystal		
• arrangement of ion	ns in an	
repeating pat	tern that	
energy		
o Varies with the	and	NaCI
of th	ne ions and the numbe	rs of ions of different charges.
•		
 Amount of energy 		ionic bonds
and crystal structure		
Must be	in order to	bonds
Measured in		
Lewis Electron Dot Diagrams	:	
• COVALENT BONDS:		
o 1. Draw		for each element in the
compound and	the electror	ns (dots).

0	z. Draw an	·	
0	3. Draw	_ by placing elements together	outting
		them.	
• Helpi	ful hints ©		
0	Put	atoms in the	
0		goes in the	
0	Each atom	have 8 electrons around it	
	 Except 		_
	■ But do	just add electrons!!!	
0	Always start with	bonds, then	, then
	-	and the	_ usually can only have
		bonds	
• Bond	ls in Lewis Structures		
0	Single bonds $\rightarrow X$	X	
0	Double bonds $\rightarrow X$	X	
0	Triple bonds → X	X	

• <u>Ex. 1</u>:

• <u>Ex. 2</u>:

• <u>Ex. 3</u>:

• <u>Ex. 4</u>:

• <u>Ex. 5</u>:

• <u>Ex. 6</u>:

• <u>Ex. 7</u>:

• <u>Ex. 8</u>:

• <u>Ex. 9</u>:

• <u>Ex. 10</u>:

• <u>Ex. 11</u>:

• <u>Ex. 12</u>:

Lewis Electron Dot Diagrams:

• POLYATOMIC IONS:

- o Same as covalent bonds, except:
 - Positive charge = ______
 - Negative charge = _____
- <u>Ex. 1</u>:

• <u>Ex. 2</u>:

• <u>Ex. 3</u>:

• <u>Ex. 4</u> :
• <u>Ex. 5</u> :
• <u>Ex. 6</u> :
Resonance Structures
• possible structure can be drawn to represent the
compound.
o Actual structure is a of the two, so that it
bond length

■ R	educed bond length results in a	bond
• Examples:		
\circ 0_3		
○ C ₆ H ₆		
O C6116		
More about bon	ds	
•		
o The	distance between atoms i	n abond
• _	bonds are	

0	The	number of degrees between two	fr
	the		
	The energy required	to a chemical bond and fo	orm
		_ isolated atoms	
s to 1	represent a chemic	-	
s to :	represent a chemic	cal compound	
s to :	represent a chemic	cal compound	
s to : 1 2	represent a chemic	cal compound	
s to : 1 2	Shows	cal compound	

•bond (pairs of s	snared electrons): A A
bond (pairs of s	shared electrons): X X
Why study bonding?	
The reason for studying bonding is to det	ermine a molecule's
 which in turn determines whether a 	will be
which in turn determines a molecul	es
which in turn describes its	<u>.</u> !
Molecular Geometry	
Predicting molecular geometry is based on the sir	nplest assumption
o The of bonding	stay as
from each other	er as possible.

the bonding electrons	The e	element with the		value will hold
Determines	the b	onding electrons	s to its	
: when there isin the moleculeany high electronegativity difference: when there areend with aelectronegativity difference;ePR Theory		arrangemen	nt of atoms in a () bor
any high electronegativity difference o: when there areend with aelectronegativity difference;	Dete	rmines	:	:
o: when there areend with aelectronegativity difference;	0		: when there is	in the molecule tha
(on the atom) that create a end with a electronegativity difference; PR Theory "			any high electronegativity diffe	rence
electronegativity difference;PR Theory	0		: when there are	
PR Theory		(on the	atom) that create a	end with a
«		ele	ctronegativity difference;	
<i>a</i>				
	PR Th	neory		
o Refers to the between of				
	0	Refers to the	between	of
valence electrons in the		valence electro	ns in the	

•	VSEPR theory states that the		between the
	valence level electron	_ surrounding an atom cau	ses these pairs to be
•	Includes pairs A	ND	_ electron pairs around
	the atom in a		
•	Results in		

VSEPR Structure	General Format	# atoms (around central atom)	# lone e- pairs (around central atom)

•	= central atom;	= bonded atoms;	= lone	pairs of electrons
		bonaca atoms,	_ 10110	pairs of cicca ons

• Ex. **AB** Model – (_______)

• Ex. **AB**₃ Model – (_______)

• Ex. **AB**₄ Model – (_______)

• Ex. **AB**₅ Model – (_______)

• Ex. **AB**₆ Model – (_______)

• Ex. **AB**₂**E** Model – (_______)

• Ex. **AB**₂**E**₂ Model – (_______)

• Ex. AB ₃ E Model -	- ()	
Hybridization				
• Mixing of	or	bitals of		energy from
	_ sublevels to form		with	
energy.				
Hybrid orbitals in	iclude:			
o	made from	s and	_ p orbitals	
0	made from	s and	_ p orbitals	
0	made from	s and	_p orbital	

•	(energy force) between molecules (covalent compounds)
•	determines the type of intermolecular force
•]	physical properties such as melting and boiling
• Types:	
0	(also called force)
0	
0	
London Dispersion Force (van der Waal's force)
Intermolecular force due to	creating
instantaneous	charged poles
Only intermolecular force f	for covalent compounds
• trmo	
•type	of intermolecular force
	of intermolecular force melting and boiling point

Intermolecular Forces

Dipole-dipole

		due to
		of molecules lini
0	– created by	and
charge se	eparated by a short distance	
Causes	melting and boiling points	s which are both physical prop
ogen Bondin	ıg	
Type of		
Intermolecular	force between	with H a
Intermolecular		
	force between	element (O/N
	force between	element (0/N
Results in	force between type of intermolecular for	element (0/N

ard	crystal structures
	melting and boiling points
	in water
	electricity if liquid or when dissolved in water
o (both	releaseto pass charge)
nd	to dissolve in alcohols
Covalent	t Compound Properties

_____ will conduct electricity when dissolved in water (but not all)

_____ melting and boiling points

_____in water

• Tend to ______ in alcohols

Nonpolar Covalent Compound Properties

•	Usually	or
•		melting and boiling points
•	Do	dissolve in water
•		conduct electricity
•		in alcohols

Exam Date:

• Chemical Bonding (Chapter 6)

- ✓ Metallic bonding
- ✓ Ions (monatomic / polyatomic)
- ✓ Chemical bonds: ionic bonds / polar covalent bonds / nonpolar covalent bonds (what elements are in them / how they form / electronegativity difference)
- ✓ Molecule / formula unit / chemical formula / diatomic molecules
- ✓ Octet Rule /Lattice structure
- ✓ Electron Dot Diagrams: ionic bonds / covalent bonds / polyatomic ions
- ✓ Resonance / Hybridization
- ✓ Bond Length / Bond Angle / Bond Energy
- ✓ VSEPR (structures / effect on polarity)
- ✓ Intermolecular forces (London dispersion / dipole-dipole / hydrogen bonding)
- ✓ Compound properties: ionic / polar covalent / nonpolar covalent