1.6 Library of Parent Functions

Linear Function

$f(x)=m x+b$

Domain: $(-\infty, \infty)$
Range: $(-\infty, \infty)$
x-intercept: $(-b / m, 0)$
y-intercept: $(0, b)$
Increasing when $m>0$
Decreasing when $m<0$

Greatest Integer Function

 $f(x)=\llbracket x \rrbracket$

Domain: $(-\infty, \infty)$
Range: the set of integers x-intercepts: in the interval $[0,1)$
y-intercept: $(0,0)$
Constant between each pair of consecutive integers Jumps vertically one unit at each integer value

Absolute Value Function

$f(x)=|x|= \begin{cases}x, & x \geq 0 \\ -x, & x<0\end{cases}$

Domain: $(-\infty, \infty)$
Range: $[0, \infty)$
Intercept: $(0,0)$
Decreasing on $(-\infty, 0)$
Increasing on $(0, \infty)$
Even function
y-axis symmetry
Quadratic (Squaring) Function $f(x)=a x^{2}$

Domain: $(-\infty, \infty)$
Range $(a>0):[0, \infty)$
Range $(a<0):(-\infty, 0]$
Intercept: $(0,0)$
Decreasing on $(-\infty, 0)$ for $a>0$
Increasing on $(0, \infty)$ for $a>0$
Increasing on $(-\infty, 0)$ for $a<0$
Decreasing on $(0, \infty)$ for $a<0$
Even function
y-axis symmetry
Relative minimum $(a>0)$, relative maximum $(a<0)$, or vertex: $(0,0)$

Square Root Function
$f(x)=\sqrt{x}$

Domain: $[0, \infty)$
Range: $[0, \infty)$
Intercept: $(0,0)$
Increasing on $(0, \infty)$

Cubic Function
$f(x)=x^{3}$

Domain: $(-\infty, \infty)$
Range: $(-\infty, \infty)$
Intercept: $(0,0)$
Increasing on $(-\infty, \infty)$
Odd function
Origin symmetry

Constant Function

$f(x)=c$ where c is any \#

Domain: $(-\infty, \infty)$
Range: $\{c\}$
y-intercept ($0, c$)
Slope $m=0$
Remains constant (not increasing or decreasina)

Rational (Reciprocal) Function
$f(x)=\frac{1}{x}$

Domain: $(-\infty, 0) \cup(0, \infty)$
Range: $(-\infty, 0) \cup(0, \infty)$
No intercepts
Decreasing on $(-\infty, 0)$ and $(0, \infty)$
Odd function
Origin symmetry
Vertical asymptote: y-axis
Horizontal asymptote: x-axis

"Step" Functions

Functions whose graphs resemble sets of stair steps are known as step functions. The most famous step function is the greatest integer function, which is denoted as $f(x)=[[x]]$ and is defined as the greatest integer less than or equal to x.

Examples:

$$
\begin{aligned}
& {[[-1]]=(\text { greatest integer } \leq-1)=-1} \\
& {[[.5]]=(\text { the greatest integer } \leq .5)=0} \\
& {\left[\left[\frac{3}{2}\right]\right]=\left(\text { the greatest integer } \leq \frac{3}{2}\right)=1}
\end{aligned}
$$

