
Sequences and Series Formula Sheet 

 

Section 1: 

 Factorial:  If n is a positive integer, n factorial is defined as  

n! = 1 · 2· 3 · 4 · · · (n – 1) · n. 

 Summation Notation (or Sigma Notation): The notation used to represent the sum of the 

terms of a finite sequence.  
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where i is called the index of summation, n is the upper limit of summation, and 1 is 

the lower limit of summation. 

 Series:  The sum of the terms of a finite or infinite sequence. 

 The sum of the first n terms of the sequence is called a finite series or the nth 

partial sum of the sequence and is denoted by: 
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 The sum of all the terms of the infinite sequence is called an infinite series and is 

denoted by: 
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 Properties of Sums 
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Section 2: 

 The nth term of an arithmetic sequence:  cdnan   where d  is the common difference 

between consecutive terms of the sequence and dac  1  .                                              

Recursion form for the n th term is  dnaan 11   

 The sum of a finite arithmetic sequence:  The sum of a finite arithmetic sequence with 

n  terms is   nn aa
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Section 3:  

 The nth term of a geometric sequence:  1

1
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n raa  where r is the common ratio of 

consecutive terms of the sequence. 

 The sum of a Finite Geometric Sequence:  The sum of the finite geometric sequence  

1a , ra1 , 2
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1ra , … , 1
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with common ratio 1r  is given by   
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 The sum of an Infinite Geometric Series:  If 1r , the infinite geometric series 
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Section 4: 

 Sums of Powers of Integers:                                 

1.     
2

)1(
...4321




nn
n                             

2.     
  

6

121
...4321 22222 


nnn

n          

3.     
 

4

1
...4321

22
33333 


nn
n                 

4.      44444 ...4321 n   
   

30

133121 2  nnnnn
                                                                                                                                                                                     

5.      55555 ...4321 n    
   

12

1221 222  nnnn
                                                                                                                                                                                                                       


