\qquad
\qquad

5-6 Study Guide and Intervention

Graphing Inequalities in Two Variables

Graph Linear Inequalities The solution set of an inequality that involves two variables is graphed by graphing a related linear equation that forms a boundary of a half-plane. The graph of the ordered pairs that make up the solution set of the inequality fill a region of the coordinate plane on one side of the half-plane.

Example Graph $\boldsymbol{y} \leq \mathbf{- 3 x}-\mathbf{2}$.

Graph $y=-3 x-2$.
Since $y \leq-3 x-2$ is the same as $y<-3 x-2$ and $y=-3 x-2$, the boundary is included in the solution set and the graph should be drawn as a solid line.
Select a point in each half plane and test it. Choose (0,0) and ($-2,-2$).

$$
\begin{array}{rlrl}
y & \leq-3 x-2 & y & \leq-3 x-2 \\
0 & \leq-3(0)-2 & -2 & \leq-3(-2)-2 \\
0 \leq-2 \text { is false. } & -2 \leq 6-2 \\
& & -2 \leq 4 \text { is true. }
\end{array}
$$

The half-plane that contains $(-2,-2)$ contains the solution. Shade that half-plane.

Exercises

Graph each inequality.

1. $y<4$

2. $-x>y$

3. $y<-\frac{1}{2} x-3$

4. $x \geq 1$

5. $x-y \geq 1$

6. $4 x-3 y<6$

7. $3 x \leq y$

8. $2 x-3 y \leq 6$

9. $3 x+6 y \geq 12$

\qquad
\qquad

5-6 Study Guide and Intervention (ontinued)

Graphing Inequalities in Two Variables

Solve Linear Inequalities We can use a coordinate plane to solve inequalities with one variable.

Example Use a graph to solve $2 x+2>-1$.
Step 1 First graph the boundary, which is the related function.
Replace the inequality sign with an equals sign, and get 0 on a side by itself.

$$
\begin{array}{rlrl}
2 x+2 & >-1 & & \text { Original inequality } \\
2 x+2 & =-1 & & \text { Change }<\text { to }=. \\
2 x+2+1 & =-1+1 & & \text { Add } 1 \text { to each side. } \\
2 x+3 & =0 & & \text { Simplify. } \\
\text { Graph } 2 x+3 & =y \text { as a dashed line. }
\end{array}
$$

Step 2 Choose $(0,0)$ as a test point, substituting these values
 into the original inequality give us $3>-5$.

Step 3 Because this statement is true, shade the half plane containing the point $(0,0)$.
Notice that the x-intercept of the graph is at $-1 \frac{1}{2}$. Because the half-plane to the right of the x-intercept is shaded, the solution is $x>-1 \frac{1}{2}$.

Exercises

Use a graph to solve each inequality.

1. $x+7 \leq 5$

2. $x-2>2$

3. $-x-7 \geq-6$

4. $3 x-20<-17$

5. $-x+1<-3$

6. $-2 x+11 \geq 15$

