Study Guide and Intervention 5-6

Graphing Inequalities in Two Variables

Graph Linear Inequalities The solution set of an inequality that involves two variables is graphed by graphing a related linear equation that forms a boundary of a half-plane. The graph of the ordered pairs that make up the solution set of the inequality fill a region of the coordinate plane on one side of the half-plane.

Example Graph $y \leq -3x - 2$.

Graph y = -3x - 2.

Since $y \le -3x - 2$ is the same as y < -3x - 2 and y = -3x - 2, the boundary is included in the solution set and the graph should be drawn as a solid line.

Select a point in each half plane and test it. Choose (0, 0) and (-2, -2).

 $y \le -3x - 2$ $y \leq -3x - 2$ $0 \le -3(0) - 2$ $-2 \le -3(-2) - 2$ $-2 \le 6 - 2$ $0 \leq -2$ is false. -2 < 4 is true.

0 x

The half-plane that contains (-2, -2) contains the solution. Shade that half-plane.

Exercises

Graph each inequality.

1. y < 4

2. *x* ≥ 1

4. -x > y

7. $y < -\frac{1}{2}x - 3$

			-	y	
_					
			0		x
			,	,	

5. $x - y \ge 1$

8. 4x - 3y < 6

		11/		
	-	y		
	0			x
	1	,		

3. $3x \le y$

6. $2x - 3y \le 6$

9. $3x + 6y \ge 12$

		y			
_	0				x
	1				

5-6

Study Guide and Intervention (continued)

Graphing Inequalities in Two Variables

Solve Linear Inequalities We can use a coordinate plane to solve inequalities with one variable.

Example

- Use a graph to solve 2x + 2 > -1.
- **Step 1** First graph the boundary, which is the related function. Replace the inequality sign with an equals sign, and get 0 on a side by itself. 2x + 2 > -1 Original inequality

	- ····································
2x + 2 = -1	Change $<$ to $=$.
2x + 2 + 1 = -1 + 1	Add 1 to each side.
2x + 3 = 0	Simplify.

Graph 2x + 3 = y as a dashed line.

- **Step 2** Choose (0, 0) as a test point, substituting these values into the original inequality give us 3 > -5.
- **Step 3** Because this statement is true, shade the half plane containing the point (0, 0).

Notice that the *x*-intercept of the graph is at $-1\frac{1}{2}$. Because the half-plane to the right of the *x*-intercept is shaded, the solution is $x > -1\frac{1}{2}$.

2. x - 2 > 2

Exercises

Use a graph to solve each inequality.

 $1.x + 7 \le 5$

Copyright © Glencoe/McGraw-Hill, a division of The McGraw-Hill Companies, Inc.

4. $-x - 7 \ge -6$

Ay
A

5. 3x - 20 < -17

			y		
-		0			x
			1		

3. -x + 1 < -3

6. $-2x + 11 \ge 15$

		-	y		
-		0			×
		0			X
-					

