4.3 Right Triangle Trigonometry

Right Triangle Definitions of Trig Functions

Let θ be an acute angle of a right triangle. The six trigonometric functions of the angle θ are defined as follows:

$$
\begin{array}{lll}
\sin \theta=\frac{o p p}{h y p} & \cos \theta=\frac{a d j}{h y p} & \tan \theta=\frac{o p p}{a d j} \\
\csc \theta=\frac{h y p}{o p p} & \sec \theta=\frac{h y p}{a d j} & \cot \theta=\frac{a d j}{o p p}
\end{array}
$$

The abbreviations opp, adj, and hyp represent the lengths of the three sides of a right triangle.

SOHCAHTOA

Ex a) Use the triangle to find the values of the 6 trig functions of θ.

Sine, Cosine and Tangent of Special Angles

*** These values can be found by looking at the unit circle **

$$
\sin 30^{\circ}=\sin \frac{\pi}{6}=\frac{1}{2}
$$

$\cos 30^{\circ}=\cos \frac{\pi}{6}=\frac{\sqrt{3}}{2}$
$\cos 45^{\circ}=\cos \frac{\pi}{4}=\frac{\sqrt{2}}{2}$

$$
\cos 45^{\circ}=\cos \frac{\pi}{4}=\frac{\sqrt{2}}{2}
$$

$\cos 60^{\circ}=\cos \frac{\pi}{3}=\frac{1}{2}$

$$
\tan 30^{\circ}=\tan \frac{\pi}{6}=\frac{\sqrt{3}}{3}
$$

$$
\sin 45^{\circ}=\sin \frac{\pi}{4}=\frac{\sqrt{2}}{2}
$$

$$
\tan 45^{\circ}=\tan \frac{\pi}{4}=1
$$

$$
\sin 60^{\circ}=\sin \frac{\pi}{3}=\frac{\sqrt{3}}{2}
$$

$$
\tan 60^{\circ}=\tan \frac{\pi}{3}=\sqrt{3}
$$

Cofunctions (the 3 main trig functions and their inverses) of complimentary angles are equal. If θ is an acute angle, the following relationships are true. For example, $\sin 30^{\circ}=\frac{1}{2}=\cos 60^{\circ}$

$$
\begin{array}{ll}
\sin \left(90^{\circ}-\theta\right)=\cos \theta & \cos \left(90^{\circ}-\theta\right)=\sin \theta \\
\tan \left(90^{\circ}-\theta\right)=\cot \theta & \cot \left(90^{\circ}-\theta\right)=\tan \theta \\
\sec \left(90^{\circ}-\theta\right)=\csc \theta & \csc \left(90^{\circ}-\theta\right)=\sec \theta
\end{array}
$$

Fundamental Trig Identities

Reciprocal Identities

$$
\begin{array}{lll}
\sin \theta=\frac{1}{\csc \theta} & \cos \theta=\frac{1}{\sec \theta} & \tan \theta=\frac{1}{\cot \theta} \\
\csc \theta=\frac{1}{\sin \theta} & \sec \theta=\frac{1}{\cos \theta} & \cot \theta=\frac{1}{\tan \theta}
\end{array}
$$

Quotient Identities

$$
\begin{aligned}
& \tan \theta=\frac{\sin \theta}{\cos \theta} \\
& \cot \theta=\frac{\cos \theta}{\sin \theta}
\end{aligned}
$$

Pythagorean Identities

$$
\begin{aligned}
& \sin ^{2} \theta+\cos ^{2} \theta=1 \\
& 1+\tan ^{2} \theta=\sec ^{2} \theta \\
& 1+\cot ^{2} \theta=\csc ^{2} \theta
\end{aligned}
$$

