Inequalities

Inequality Sign and Meaning	Example
< "less than"	<i>x</i> < 5
	This means x is any number LESS THAN 5
	– 1, 0, 1, 2, 3, 4, 5
> "greater than"	x > 0
	This means x is any number GREATER THAN 0
	0, 1, 2, 3
\leq "less than or equal to"	$x \leq 2$
	This means x is any number LESS THAN OR EQUAL TO 2
	– 1, 0, 1, 2
\geq "greater than or equal to"	$x \ge 1$
	This means x is any number GREATER THAN OR EQUAL TO 1
	1, 2, 3, 4

• If the mouth is open to the value, that is the greater value of the inequality

• The line under the signs (\leq and \geq) can remind you of an equals sign because an = sign has straight lines *Determine the value of the inequalities below.*

a) $x \ge -3$ b) y < 10 c) $a \le 7$

If there is more than one inequality sign \rightarrow work from left to right to determine its value.

Example 1) $-3 \le x \le 2 \rightarrow x$ is greater than or equal to -3 and is less than or equal to 2

→ x could be -3, -2, -1, 0, 1, 2

Determine the values x could be for the following.

d)
$$2 \le x < 5$$
 e) $0 \le x \le 7$ f) $-6 < x < 4$

Set-Builder Notation Using Inequalities

Review: What could x be given {x | x is a positive multiple of 2}?

So, given $\{x \mid x \ge -3\}$, x could be any number GREATER THAN OR EQUAL TO -3 $-3, -2, -1, 0, 1, 2 \dots$

Determine what x could be given the following. (These are just like the examples one the other side!)

g)
$$\{x \mid x < 7\}$$
 h) $\{x \mid -1 \le x \le 5\}$ i) $\{x \mid 3 < x \le 13\}$

Using Inequalities for Sets

**You may not always be able to use a venn diagram. For example, if $A = \{x \mid x \ge 3\}$, that means x could be any number greater than or equal to 3. It is impossible to put an infinite amount of numbers like that into one venn diagram.

Ex 2) If
$$A = \{x \mid x \le 4\}$$
 $B = \{x \mid -2 < x < 6\}$ $C = \{x \mid -5 \le x < 2\}$

Find:

$$j) A \cup B = k) (A \cup B) \cap (A \cup C)$$

I)
$$A \cup C =$$
 m) $A \cup (B \cap C) =$

Interval Notation

For interval notation, we write only the first and last numbers included in the interval.

- We use square brackets when we want to include the end value []
- We use round brackets when we don't want to include the end value

Example: Set-builder notation $\{x \mid -3 \le x < 5\} \rightarrow$ Interval Notation: [-3, 5)3 is included 5 is not included 3 is included 5 is not included If $A = \{x \mid x \le 4\}$ $B = \{x \mid -2 < x < 6\}$ $C = \{x \mid -5 \le x < 2\}$

Express each in interval notation:

n) $A \cap B =$ o) $A \cap C =$

p)
$$(A \cap B) \cup (A \cap C) =$$
 q) $A \cap (B \cup C) =$