8.1 \& 8.2 - Product and Quotient Exponent Properties

Property	Completed Examples	Additional Examples
Product of Powers $a^{m} \cdot a^{n}=a^{m+n}$	$x^{2} \cdot x^{7} \cdot x=x^{2+7+1}=x^{10}$ $3^{2} \cdot 3^{7}=3^{2+7}=3^{9}=19,683$	
Power of a Power $\left(a^{m}\right)^{n}=a^{m n}$	$\left(n^{3}\right)^{4}=n^{3 \cdot 4}=n^{12}$ $\left(4^{2}\right)^{3}=4^{2 \cdot 3}=4^{6}=4,096$	
Power of Product $(a b)^{m}=a^{m} b^{m}$	$(x y)^{5}=x^{5} y^{5}$ $(42 \cdot 12)^{2}=42^{2} \cdot 12^{2}=254,016$	
Quotient of Powers $\frac{a^{m}}{a^{n}}=a^{m-n}$	$\frac{x^{11}}{x^{4}}=x^{11-4}=x^{7}$ $\frac{6^{12}}{6^{8}}=6^{12-8}=6^{4}=1,296$	
Power of a Quotient $\left(\frac{a}{b}\right)^{m}=\frac{a^{m}}{b^{m}} \quad, b \neq 0$	$\left(\frac{x}{y}\right)^{5}=\frac{x^{5}}{y^{5}}$ $\left(\frac{x^{2}}{4 y}\right)^{3}:=\frac{x^{2 \bullet 3}}{4^{3} y^{3}}=\frac{x^{6}}{64 y^{3}}$	

8.3 - Negative Exponents \& Zero as an Exponent

Rules	Completed Examples	Additional Examples
Zero as an exponent - Any number raised to the power of zero equals 1 $a^{0}=1 \quad a \neq 0$	Ex 1) Evaluate 5° - Any number raised to the power of 0 equals 1 , so $5^{\circ}=1$ Ex 2) Evaluate x^{0} - Even though we don't know what x equals, we know that any number raised to the power of 0 equals 1 , so $x^{0}=1$	
Negative Exponents *We can't evaluate negative exponents, no matter where/how they appear** We need to rewrite them so that they become positive, using the rules below. $a^{-n}=\frac{1}{a^{n}} \quad a \neq 0$ If the term with a negative exponent is a part of a fraction, move the term and its exponent to the denominator, and make the exponent positive. If the term with a negative exponent is NOT a part of a fraction, make a fraction, and move the term and its exponent to the denominator, and make the exponent positive. $a^{n}=\frac{1}{a^{-n}} \quad a \neq 0$ If there is a term with a negative exponent in the denominator of a fraction, bring the term and its exponent to the numerator, and make the exponent positive.	Ex 3) Evaluate 2^{-1} - We can make the exponent positive by creating a fraction-1 would be the numerator and the denominator would be the given expression, but with a positive exponent $2^{-1}=\frac{1}{2^{1}}=\frac{1}{2}$ Ex 4) Evaluate d^{-2} Using the same method used in ex 3: $d^{-2}=\frac{1}{d^{2}}$ Ex 5) Evaluate $\frac{1}{2^{-3}}$ - We can make the exponent positive by bringing 2^{-3} to the numerator, and in turn making the exponent positive $\frac{1}{2^{-3}}=2^{3}=8$ Ex 6) Evaluate $\frac{1}{y^{-7}}$ Using the same method as ex 5 : $\frac{1}{y^{-7}}=y^{7}$	

