<u>UNIT NINE</u>: Chapter 12 ~ Liquids and Solids

Liquids

 Less common than ______ • A substance in the liquid state can exist only within a relatively narrow range of _____ and _____. **Liquids & Kinetic Molecular Theory** Liquids have ______ and ______ of its container. KMT can be applied to liquids considering _____ • Particles of liquids are in _____ motion. • ______ together than those of ______ • Have ______ KE than particles of gases Attractive forces are ______ between liquid particles than gas particles Liquids are ______

	and are therefore re	ferred to as	-
\circ A fluid is substance the fluid is substance the fluid is substance the fluid is substance the fluid is t	nat can	and therefore tak	e the shape of its
container.			
• Most liquids naturall	y flow	because of _	
scosity			NEKO NAN NIKA VIENA V
Can be defined as the			9000
			-
• Due to			A
	property		
0	substances ha	ive	viscosities
operties of Liquids			
Relatively			
• Most substances are		of times more	
dense as	than as _		
• Most substances are	only slightly	as	
	than as		
• Exception:		is less dense wh	en it solidifies.

Relative ______

 Relation 	ative		
0	Liquids are much less compressible	e than gases because	
• Abi	lity to		
0	Any liquid gradually diffuses throu	ghout any other liquid in	\bigcirc
	which it can dissolve due to the		
		of particles.	
0	Diffusion occurs much	in liquids than in gas	ses
	because liquid particles are much _	togethe	er.
	•	between the p	particles slow
	movement.		
	 If the 	of the liquids are	
		,	will occur more
		<u>-</u>	

0	Can be defined as a	that tends to pull adja	cent parts of a
	liquid's surface together, thereby _		_surface area to the
	smallest possible size.		
	 Results from the 		between
	the particles of a liquid.		
0	Ex consists of	bonds	•
	•	forces =	i
		surface tension	
	 Results in 		·
0		: the	
	of the surface of a	to the surface of a	
		a a liquid will	
	 Because of capitary action 	n, a liquid will	
		in a narrow	w tube if a strong
	attraction exists between	the liquid molecules and th	e molecules that
	make up the surface of the	e tube.	

•	and
(o: liquid to gaseous state
	 Occurs the boiling point.
C	c: a form of vaporization; liquid to
	gaseous state
	 Occurs the boiling point.
•	When a liquid is, the average of the particles
	 If the, the particles are
	pulled into an even more arrangement.
C	•: the physical change of a liquid to a solid by removal of
	heat
Solids	s
• Ha	ave and
• Ha	ave enough kinetic energy (KE) to, but not to
m	ove out of position.

Solids & Kinetic Molecular Theory

• Par	ticles of solids are more	packed than those of
0		in solids are much more
	effective in solids than in liquids and gases.	
	 Solids are ordered. 	
Prope	erties of Solids	
•	and	
0	Solids maintain a	a container.
0	Volume of solids change	with change in
	temperature or pressure.	
	 Because the particles are packed version 	ery tightly/closely together with
•	the physic	ical change of a colid to a liquid by
U	the addition of heat	ical change of a solid to a liquid by

0	: the tempe	erature at which a solid become
	liquid	
0		: substances that retain certa
	liquid properties even at a temperature at wh	nich they appear to be solids
	and	
0	In general, substances are	in the solid state.
	•	dense than
	•	dense than
0	Particles of solids are so	together
	that they can be considered	·
	 Very little 	
0	Diffusion does occur in solids, it oc	ccurs

7

Types of Solids

		Solids
0	Most solids are	solids, meaning they
	contain	(either single crystals or groups of crystals fused
	together).	
	•	: a substance in which the particles are arranged
	in an orderly,	geometric, repeating pattern.
0		: the total three-dimensional arrangement
	of particles of a crystal	
	•	: lattice
С		: the smallest portion of a crystal lattice that shows
	the 3D pattern of the en	ntire lattice
0	Types of	– classified by scientists according to the
	shape of the crystals	

Basic Crystal Structures

1. ______ – 3 axes (same length for each and all at 90° angles) • • ex. Salt, fluorite 2. ______ – 3 axes (2 are same length, all 90° angles) • • ex. Tin, zircon 3._____ – 3 axes (all different lengths, all 90° angles) • o ex. Sulfur, topaz 4. ______ – 3 axes (different lengths, 2 have 90° angles) • ex. Manganese, gypsum 5._____ – 3 axes (all different lengths, all different angles) o ex. Turquoise 6. ______ – 4 axes, 3 in the same plane • ex. Graphite, corundum **Types of Solids** _____ solids _____ comes from Greek meaning _____

These solids are ones whose particles are arranged _______

They do not have _____

______ their shape for a long time

.

- Flow ______ slowly
- Ex. Glass and plastic

Changes in State

Freezing and Melting

o _______ of heat energy
o _______ in order of the particles
o _______ of heat energy
o _______ of heat energy
o _______ of heat energy
o _______ in order of the particles

Evaporation and Vaporization

• **<u>Ex.</u>** Water vapor \rightarrow ice

State Change Summary

State Changes and Heat

•	Changes in state occur when	
•	Melting point and freezing are the temperature.	
•	Boiling point and condensation point are the temperature.	

Which way the substance goes depends on whether _______

Phase Change Diagram

o	is a measure of the
be	etween the particles of the solid.
	Ex. The heat of fusion for water is 334 kJ/kg.
	 It takes 334 kJ of energy to melt 1 kg of ice changing its temperature.
Molar Heat of	
• The amo	ount of heat energy needed
0	is a measure of the
be	etween the particles of the liquid.
	 attraction means energy will be
	required to overcome it so the molar heat of vaporization will be
o He	eat of vaporization for water is 2260 kJ/kg.
Phase Diagrar	ns
• A graph	

•		: indicates the _		and
		conditions at which	the solid, liquid, a	and vapor of the
	substance can	at equilibrium.		
•		: indicates the critic	cal temperature a	nd critical
	pressure.			
•			(t _c): the temper	rature above
	which a substance	exist i	n the	state.
•		(p _c): the low	est pressure at wl	hich the
	substance	exist as a	at the critica	l temperature

• Phase Diagrams

Water

Facts about Water

- Water can exist in _____: solid, liquid, and gas. • On Earth, water is the ______ liquid • • Making up about _____ of the Earth's surface • Though a significant amount of this water is _____ Water is an ______ of all organisms. • _____ of the mass of living things is water. **Structure of Water** bond ______ structure Bond angles are ______ The molecules in solid or liquid water are linked by ______. •
 - Usually from ______ molecules per group in liquid water.

• Solid

• Liquid

Ice III Structure Liquid Water Structure

C. Ophardt, c. 2003

Ice Consists of water molecules in the ______ arrangement.

o ______ account for the relatively

______ of ice.

• As the ice is heated, the ______ energy of the molecules causes

 \circ When the melting point is reached, the energy of the molecules is so

______ that the rigid open structure of the ice crystals

_____, and ice turns into liquid water.

Liquid Water

- As the temperature is _____, water molecules move _____ apart.
 - _____ KE allows them to _____

molecular attractions.

• Groups of water molecules ______ enough energy to break into

_____ molecules.

When the temperature reaches the boiling point (100°C) they ______

the liquid state and become ______.

Hydrogen bonding between water molecules requires a	_ and
therefore water has a relatively	
compared to other liquids.	
• Hydrogen bonds between molecules of liquid water at 0°C are	_and
more than those between molecules of ice at the same	
temperature.	
 Rigid structure of water has 	
 Water molecules are able to 	•
 Liquid water is than ice. 	
• dense at	
Physical Properties of Water	
• At, pure liquid water is	
O	
o*	
o*	
• And	
 *any observable odor or taste is caused by 	
such as dissolved minerals, liquids, or gases	
•: expanding in volume as it	

<u>Chapter 13</u> ~ Solutions: Types of Mixtures

Mixtures

	: a combina	tion of more than one	
	·		
		: the mixing is the	same through
0	: two or mor	e substances	
spread thro	oughout a		
✤ Mixt	ure of substances that has	; the	
•	Fy Sugar & water		
		414	
	Ý	: that	
	which dissolves		
	which dissolves ⊹	: that which	
	which dissolves	: that which	
	which dissolves	: that which g the mixing is not the s	same through

	Ex. Gelatin, whipped cream, fog, smoke, blood, paint					
0	: a mixture of liquids in					
	which the liquids are throughout one another; a specific					
	type of					
	<u>Ex.</u> Mayonnaise, cream, butter, lotion					
0	: a mixture that looks					
	when stirred or shaken, but					
	into different layers when					
	Ex. muddy H ₂ O, Italian dressing, oil & water					
Tynd	all Effect					
0	Colloids appear because individual particles					
	cannot be seen, but they are					
0	The scattering of light by colloidal particles dispersed in a transparent					
	medium is known as the					

•

◆ Ex. Headlight beams are visible on a foggy night

Property that can be used to distinguish between ______

Solutes

	 <u>Ex.</u> NaCl and 	
	• <u>Ex.</u> Certain	compounds –
	$HCl \rightarrow H_3O^+ + Cl^-$	
0		: a substance that dissolves in water to give
	a solution that	an electric current.
	 Neutral solute molecules 	s in a solution
	an electri	c current because
	The Solu ⁻	tion Process

Factors Affecting the Rate of Dissolution

- 1._____
 - Any solid solute in a liquid solvent dissolves

because molecules or ions of the solute are

		0	Dissolution occurs		of the solute.
		0	In general, the more	divided a	a substance is, the
	2		the surfa	ce area and the	it dissolves.
•	۷.	0			Participation of
			helps to disperse the sol	ute particles and bring	
			with the solute surface.	into contact	20,00
		0	Similar to	(#1)	
•	3.				
		0		the temperature of the	e solvent results in the
				motion of the solvent	molecules and the
			• At	temperature, the	
			between the solve	nt molecules and the solu	te are

Solubility

- _____: capable of being dissolved
- For every solute and solvent combination there is a _____ as to

the amount of solute that can ______.

• _____: the physical state in which the

opposing processes of dissolution and crystallization of a solute occur

Saturation

• _____: a solution that contains the

_____ amount of dissolved solute.

• _____: a solution that contains ______

solute than a saturated solution under the existing conditions.

• _____: a solution that contains ______

dissolved solute than a saturated solution contains under the same conditions.

Solubility Values

- The _______ of a substance is the _______ of that substance required to form a _______ solution with a _______ amount of solvent at a _______ temperature.
 Varies with _______.
 For gases, the _______ must also be specified.
 The _______ at which a solid dissolves is ______ to solubility.

 Solute-Solvent Interactions
 - "_____"

• Similarities of substances depend on:

- Type of ______
- •
- Intermolecular _____ between molecules of solute and

solvent.

- Dissolving ionic compounds in aqueous solution
 - o _____: dissolved in water
 - The attraction between ______ molecules and the ______ is

strong enough to draw the ions away from the crystal _____

(solute) and into ______.

- This process with water as the solvent is called ______.
- The ions are said to be ______.
- Some ionic substance form crystals that incorporate water molecules

known as ______.

- Ex. $CuSO_4 \cdot 5H_2O$
- ______ solvents
 - compounds are _____ generally soluble in

______ solvents.

	• The attraction between the ic	nic solutes and non	polar solvents is
	<u> </u>	to overcome th	ie intramolecular
	forces holding the	together.	
Liquid so	olutes and solvents		
o Cla	assified by how they mix:		
	•: two o	or more liquids that	to
	dissolve freely into one anoth	er	
	• They	in each	other.
	•:	describes two or m	ore liquids that
	mix into eac	h other	
	• They	in each o	other.
Effects of Tem	perature and Pressure on S	olubility	
• Pressure			
0	in pressure	gas	
so	lubilities in		
o Ha		on the	
sol	lubilities of liquids or solids in liq	uid solvents.	

28

• Temperature

	0	temperature often	the
		solubility of	
	0	the temperature usually gas	
		solubility.	
Concer	ntrati	on	
•	The _	of a solution is a measure of the amo	ount of
	solute	e in a given amount of solvent or solution.	
•	Ways	to express the concentrations of solutions:	
	0		
Molari	ty		
•	Can b	e defined as the	
			·

• Must know the molar mass of the _____.

• Examples!

1. What is the molarity of a solution composed of _____ grams of hydrochloric acid, _____, in ____ L of solution?

2. How many moles of potassium iodide, _____, are present in _____L

of a _____ M potassium iodide solution?

3. What volume of a ______ M solution of hydrogen bromide, _____, is

needed for a reaction that requires _____ grams of hydrogen bromide?

<u>Chapter 14</u> ~ Compounds in Aqueous Solutions

Dissociation

The separation of ______ that occurs when an ______ compound

dissolves is called ______.

• <u>Ex.1:</u>

• <u>Ex.2:</u>

o <u>Ex.3:</u>

o <u>Ex.4:</u>

• <u>Ex.5:</u>

Ionization

Some _______ compounds can also form ______ in solution.
Usually ______ compounds
Ions are formed from ______ molecules by the action of the ______.
Ions are formed from ______.
Creation of ions _______.
Different than ______.
The extent to which a _______ ionizes in solution ______.
The extent to which a _______. the molecule

	es) and	the so	olute and solve	nt
(intermolecular forc	es).			
o <u>Ex.</u>				
	ion (H ₃ O+)			
 O H⁺ doesn't exist 	st			
• A	is trans	sferred directly fr	om HCl to a	
	molecule, when	re it becomes		_ bon
to oxyge	en.			
	Bond breaks)		
H:00+	н;:сі:	H: 0:H	+ :ci :	
Water	Hydrochloric	Hydronium	Chloride	
(H ₂ O)	acid (HCl)	(H ₃ O ⁺)	(CIT)	
				1

Strong and Weak Electrolytes

•	The	with which substances	an electric
	current is	to their	to form ions in
	solution.		
•		electrolytes	
	o Any con	npound of which	of the dissolved
	compo	and exists as ions in aqueous solution.	
	• H	Cl, HBr, HI, all ionic compounds	
	\circ When s	trong electrolytes dissolve in water, they	y yield ions.
•		electrolytes	
	o A comp	ound of which a relatively	of the
	dissolv	ed compound exists as ions in aqueous s	olution.
	• *:	* the same as nonelectrolytes	where of the
	d	issolved compound exists as ions	
	• <u>E</u>	<u>x.</u> HF – hydrofluoric acid	
•	Strength of el	ectrolytes ist	o the concentration of a

Semipermeable Membranes

Allow the movement of _____ particles

while blocking the movement of other particles.

Osmosis

The ______ of _____ through a semipermeable

membrane from the side of ______ solute concentration to the side of

_____ solute concentration.

• Occurs whenever two solutions of ______ concentrations are

_____ by a semipermeable membrane.

Osmotic Pressure

• The_	`he that must be applied to		that must be applied to
osmo	osis.		
0		on the	of solute
	particles,	on the	of solute particles.
0	By	the c	concentration of the solution, the osmotic
	pressure	as v	vell.
smosis in	Our Bodies!		
•		are semipe	rmeable, so, of osmosis
is		_to cell life.	
0	Cells	water and	when placed in a solution of
		concentratio	on.
0	Cells	water and	when placed in a solution of
		concentration	
0	In	, cells are	e from swelling and
	shrinking by _		that surround the cells.
	Blood an	ld lymph are	in concentration to the
	concentr	ration inside the cel	1.

Osmosis in animal cell

Exam Date: _____

- Liquids & Solids (Chapter 12)
 - ✓ Kinetic- Molecular Theory / focus on energy of particles
 - ✓ properties of liquids density / incompressible / viscosity / surface tension / capillary action
 - ✓ properties of solids density / incompressible / crystal structures
 - ✓ amorphous solids
 - ✓ changes in state name of each / define / focus on gain or loss of energy
 - ✓ phase diagram
 - ✓ water chemistry (where / amount /need) / structure / polar / density / ice

• Solutions (Chapter 13)

- ✓ mixtures / types
- ✓ solutions / types
- ✓ dissolving process / rates of dissolving
- ✓ like dissolves like
- ✓ solubility / saturated / unsaturated / supersaturated
- ✓ concentration / molarity

• Ions in Aqueous Solutions (Chapter 14)

- ✓ dissociation / ionization
- ✓ ionic equations for each
- ✓ electrolytes / nonelectrolytes
- ✓ semipermeable membrane / osmosis