UNIT EICHI: Chapter 10 ~ Physical Characteristics of Gases

Kinetic-Molecular Theory

* A theory developed in the late $19^{\text {th }}$ century based on the idea that particles of matter are \qquad
\diamond All particles also have \qquad .
* Can be used to explain the properties of \qquad
\qquad and
\qquad by the \qquad of the particles and the \qquad that act between them.
\qquad , but not to \qquad
out of position.
\qquad have enough KE to

\diamond \qquad have enough KE to
out of position
\qquad over and around one another, but the particles are still
\qquad together.
\qquad have enough KE to \qquad
from one another.

Kinetic-Molecular Theory of Gases

* Provides a model of an \qquad
* An \qquad is an \qquad gas that perfectly fits
all the assumptions of the kinetic-molecular theory (K-MT).
* Ideal gases \qquad consider the interactions between the gas particles and \qquad how gases actually exist.

Assumptions of Kinetic-Molecular Theory

* 1. Gases consist of \qquad numbers of \qquad particles that are
\qquad relative to their \qquad .
$>$ Molecules of gases are much
\qquad than those of
\qquad -.

\diamond Most of the \qquad occupied by a gas is \qquad space.

2. Collisions between \qquad particles and between particles and container
\qquad are \qquad collisions.
\diamond Meaning, there is no net loss of \qquad .

* 3. Gas particles are in \qquad
\qquad . They therefore possess KE
\qquad

4. There are no forces of \qquad or
\qquad between \qquad particles.

* 5. The average \qquad of gas particles depends on the
\qquad of the gas.
\diamond Since all of the particles of the same \qquad have the same \qquad ,
the kinetic energy depends on the \qquad .
- $\mathrm{KE}=1 / 2 m v^{2}$
- Average speed and kinetic energy will \qquad with
and vice versa.

So if they aren't ideal, what are they?

* Gases that deviate from \qquad
behavior are called \qquad
 .

\qquad : a gas that \qquad completely
according to the assumptions of the K-MT.
- How gases \qquad .

Ideal Gas vs. Real Gas

Ideal Gas	Real Gas
There are \qquad attractive or repulsive forces between particles.	There are \qquad attractive and repulsive forces between particles.
Particles have ___ volume.	Particles have a __ volume.
Collisions are \qquad (no loss in total kinetic energy)	Collisions are \qquad (gas particles lose energy when they collide)

Real Gases

* The conditions in \qquad gases that make them \qquad from
\qquad behavior (and the K-MT assumptions) are:

\diamond

\qquad

$$
\diamond
$$

\qquad \diamond \qquad

* These conditions make the gas particles move \qquad together which will \qquad their collisions and the attractive \qquad between them.

Physical Properties of Gases

* \qquad
\qquad
\diamond Gas particles \qquad past one another.
- **Property similar to \qquad .**
\diamond Gases and liquids are both referred to as fluids because they \qquad .
* \qquad
\diamond Gases are \qquad dense than the
\qquad or \qquad state of the
\qquad substance.
- Particles in a \qquad are about \qquad times farther apart than those in a \qquad .
- Therefore, there is a lot of \qquad space between the particles.
* \qquad
\diamond Gas particles that were initially \qquad can be
\qquad together.
\qquad .

Fig. 15.I Compression of a gas by applying pressure
http://ima ges.tutorvista.com/content/gas-laws/gas-compression-by-pressure.gif
\diamond Gases \qquad and \qquad with one another, even
without being \qquad .
\diamond \qquad : the spontaneous \qquad of the
particles of \qquad gases caused by their random motion. of diffusion depends on:
- The particles' \qquad
- The particles' \qquad
- The \qquad forces between the particles
\qquad : a process by which \qquad
through a \qquad .
\qquad of effusion depends on:
- The particles' \qquad
- The particles' \qquad
- Molecules of \qquad mass effuse faster than molecules of
\qquad mass.
* Diffusion vs. Effusion

http://www.wikipedia.com

http://upload.wikimedia.org/wikipedia/commons/thumb/1/12/Diffusion.svg/410px-Diffusion.svg.png

What is Pressure?

* Pressure can be defined as the \qquad
\qquad -
* Gas molecules exert \qquad on any surface with which they
\qquad .
\diamond Depends on \qquad , \qquad and the number of
\qquad present.
* The \qquad also exerts pressure.

How is Pressure Measured?

* There are two devices used to measure pressure:

$$
\diamond
$$

\qquad : used to measure atmospheric pressure
\qquad : used to measure the pressure of an enclosed gas
sample

BAROMETER

MANOMETER

Units of Pressure

* \qquad
* \qquad
* \qquad
\diamond SI unit of pressure
\triangleleft More convenient to represent pressure in

Unit Equivalents

$$
\begin{aligned}
& 1 \mathrm{~atm}= \\
& 760 \mathrm{~mm} \mathrm{Hg}= \\
& 760 \mathrm{torr}= \\
& 101.3 \mathrm{kPa}= \\
& 1.013 \times 10^{5} \mathrm{~Pa}=
\end{aligned}
$$

Standard Temperature and Pressure

* Used for purposes of \qquad among scientists
* Abbreviated \qquad
* At STP, the temperature is \qquad ${ }^{\circ} \mathrm{C}$ (or \qquad K) and the pressure is
\qquad atm (or \qquad kPa).

Temperature

* Temperature is a measure of the \qquad in an object.
* Temperature scales:

$$
\begin{aligned}
& \diamond \longrightarrow \text { based on boiling point and freezing point of water } \\
& \diamond \longrightarrow \text { based on absolute zero }
\end{aligned}
$$

Temperature Conversions

* Celsius (t) to Kelvin (T)
\diamond
* Kelvin (T) to Celsius (t)
\qquad

Temperature Conversion Practice Problems

Ex. 1:
Ex. 4:

Ex. 2:

Ex. 5:

Ex. 3:
Ex. 6:

The Gas Laws

* Simple \qquad relationships between gas variables of:

$$
\begin{equation*}
\diamond \tag{T}
\end{equation*}
$$

\qquad

$$
\begin{equation*}
\diamond \tag{P}
\end{equation*}
$$

\qquad
\diamond \qquad (n)

Boyle's Law

* \qquad
* States that the \qquad of a fixed mass of gas
varies \qquad with the \qquad at
constant \qquad .

$$
\diamond \mathrm{k}=
$$

\qquad where k is a \qquad value

Variables: \qquad

* Constants: \qquad
* Boyle's Law can be used to compare changing conditions for a gas, where:

$$
\begin{aligned}
& \diamond \ldots=\text { initial conditions } \\
& \diamond \ldots=\text { final conditions }
\end{aligned}
$$

How to Solve Boyle's Law

* The equation for Boyle's Law:
* Units of pressure (P_{1} and P_{2}) must be the \qquad
\triangleleft Can be \qquad
* Units of volume (V_{1} and V_{2}) must be the \qquad
\diamond Can be \qquad
* Must show all of your work!

Practice Problems!!

1. Nitrous oxide $\left(\mathrm{N}_{2} \mathrm{O}\right)$ is used as an anesthetic. The pressure on L of $\mathrm{N}_{2} \mathrm{O}$ changes from \qquad kPa to \qquad kPa . If the
temperature does not change, what will the new volume be?
2. A balloon initially had a volume of \qquad L. When the gas inside the balloon was allowed to expand to a volume of \qquad L , the pressure was \qquad atm. Assuming constant temperature, what was the initial pressure of the gas in the balloon, in atm?

Charles' Law

* \qquad
* States that the \qquad of a fixed mass of gas at constant \qquad varies \qquad with the
\qquad temperature

$$
\diamond \mathrm{k}=
$$

\qquad where k is a \qquad value

* Variables: \qquad

* Constants:

\qquad

* Charles' Law can be used to compare changing conditions for a gas, where:
\diamond \qquad $=$ initial conditions
\diamond \qquad = final conditions

How to Solve Charles' Law

* The equation for Charles' Law:
* Units of volume $\left(\mathrm{V}_{1} \& \mathrm{~V}_{2}\right)$ must be the \qquad \diamond Can be \qquad
\star Units of temperature ($\mathrm{T}_{1} \& \mathrm{~T}_{2}$) \qquad be in Kelvin! \checkmark Gas ___ and Kelvin (not Celsius) ___ are
proportional to each other.
\qquad

Practice Problem!

1. A balloon was inflated in a room at \qquad ${ }^{\circ} \mathrm{C}$. The balloon was then heated to a temperature of \qquad ${ }^{\circ} \mathrm{C}$ and reached a volume of \qquad liters. What was the original volume of the balloon if the pressure remained constant?

Gay-Lussac's Law

* \qquad
* States that the \qquad of a fixed mass of gas at
constant \qquad varies \qquad with the
\qquad temperature

$$
\diamond \mathrm{k}=
$$

\qquad where k is a \qquad value

Variables: \qquad

* Constants: \qquad
* Gay-Lussac's Law can be used to compare changing conditions for a gas, where:

$$
\begin{aligned}
& \diamond \ldots=\text { initial conditions } \\
& \diamond \ldots=\text { final conditions }
\end{aligned}
$$

How to Solve Gay-Lussac's Law

* The equation for Gay-Lussac's Law:
* Units of pressure $\left(\mathrm{P}_{1} \& \mathrm{P}_{2}\right)$ must be the \qquad
\diamond Can be \qquad

Units of temperature $\left(\mathrm{T}_{1} \& \mathrm{~T}_{2}\right) \underline{\text { must }}$ be in \qquad !

Must show all of your work including temperature conversions!

Practice Problem!

1. The pressure in a car tire is \qquad kPa . After a long drive, the tire has a pressure of \qquad kPa and a temperature of
\qquad ${ }^{\circ} \mathrm{C}$. Assuming the volume did not change, what was the temperature, in ${ }^{\circ} \mathrm{C}$, of the air in the tire before the drive?

The Combined Gas Law

*
* Expresses the relationship between \qquad , \qquad , and
\qquad , of a fixed \qquad of gas
$\diamond \mathrm{k}=$ \qquad where k is a \qquad value
* Variables: \qquad
* Constant: \qquad
* Combined Gas Law can be used to compare changing conditions for a gas, where:

$$
\begin{aligned}
& \diamond \ldots=\text { initial conditions } \\
& \diamond \ldots=\text { final conditions }
\end{aligned}
$$

How to Solve Combined Gas Law

* The equation for Combined Gas Law:
\qquad \diamond Can be \qquad
\star Units of temperature $\left(\mathrm{T}_{1} \& \mathrm{~T}_{2}\right) \underline{\text { must }}$ be in \qquad !
* Units of pressure ($\mathrm{P}_{1} \& \mathrm{P}_{2}$) must be the \qquad
\diamond Can be \qquad
* Must show all your work including temperature conversions!

$$
4 \text { Laws in } 1
$$

Practice Problems!!

1. The volume of a gas filled balloon is \qquad L at \qquad K and
\qquad kPa of pressure. What would the volume be at STP?
2. A \qquad L air sample has a pressure of \qquad kPa at a temperature of ${ }^{\circ} \mathrm{C}$. If the temperature is raised to \qquad ${ }^{\circ} \mathrm{C}$ and the volume expands to \qquad L , what will the new pressure be?

Dalton's Law

* \qquad

of gases is \qquad to the \qquad
of the \qquad pressures of the component gases
\diamond \qquad : the pressure of each gas in a mixture

Dalton's Law Equation

* Where, \qquad $=$ total pressure
\qquad = partial pressures
* Pressures must be in the \qquad units
\diamond Can be \qquad

Practice Problem:

1. A mixture of three gases, A, B, and C, is at a total pressure of \qquad atm. The partial pressure of gas A is \qquad atm; that of gas B is \qquad atm. What is the partial pressure of gas C ?

Gas Collected by Water Displacement (Application of Dalton's Law)

* A way of collecting \qquad in the laboratory
\diamond Gas produced \qquad the water

* Gas collected in this way is always mixed with \qquad and is
therefore not \qquad
\diamond Water vapor also exerts a pressure (because it is a \qquad), known as
* When the water levels inside and outside of the bottle are the \qquad the pressure inside the bottle would be the same as the pressure.

How to Solve Water Displacement by Gas

* \qquad is read from a barometer in the lab
* \qquad can be found in a table
\diamond Table A-8 on page 899 in your textbook!!

Practice Problem!

1. A chemist collects a sample of $\mathrm{H}_{2} \mathrm{~S}_{(\mathrm{g})}$ over water at a temperature of \qquad ${ }^{\circ} \mathrm{C}$. The total pressure of the gas that has displaced a volume of \qquad mL of water is
\qquad kPa . What is the pressure of the $\mathrm{H}_{2} \mathrm{~S}$ gas collected?

Chapter 11 ~ Molecular Composition of Gases

Gay-Lussac's Law of Combining Volumes of Gas

* States that at constant \qquad and \qquad the
\qquad of gaseous reactants and products can be expressed as
\qquad of small whole numbers
\triangleleft Examples:

Avogadro's Law

* States that equal \qquad of gases at the same
\qquad and \qquad contain equal numbers of
\diamond The gas volume is \qquad proportional to the amount of gas, at given temperature and pressure.
* Variables: \qquad
* Constants: \qquad

Molar Volume of Gases

* According to Avogadro’s Law, one mole of any gas will occupy the same
\qquad as one mole of any other gas at the same
\qquad and \qquad , despite \qquad differences.
\diamond The volume occupied by \qquad of a gas at \qquad is
known as the \qquad of a gas.
- Molar volume = \qquad Memorize!!

The Ideal Gas Law

* \qquad
* Introduces \qquad of gas (measured in \qquad) as a $4^{\text {th }}$ variable, \qquad
\star As the number of \qquad increases (at constant volume and temperature) the \qquad increases.
* As the number of \qquad increases (at constant pressure and temperature) the \qquad increases.
* Therefore, all four variables are \qquad .

What's the Ideal Gas Law?

* A \qquad relationship among \qquad , \qquad
\qquad , and the number of \qquad of a gas.
\star States that the \qquad of a gas varies \qquad with the number of \qquad of a gas and its Kelvin \qquad . The
\qquad also varies \qquad with \qquad .

How to Solve the Ideal Gas Law

* The equation for the Ideal Gas Law:
* Units of pressure (P) can be \qquad
* Units of volume(V) must be in \qquad
* Units of temperature (T) $\underline{\text { must }}$ be in \qquad !
* Units of amount (n) must be in \qquad
\diamond May need to covert from \qquad \rightarrow moles
* Must show all of your work including temperature conversions!

The Ideal Gas Constant

* The constant \qquad is known as the \qquad
\triangleleft Value depends on the chosen units for \qquad .

$$
\mathrm{R}=8.314 \frac{\mathrm{~L} \cdot \mathrm{kPa}}{\mathrm{~mol} \cdot \mathrm{~K}}
$$

$\mathrm{R}=0.0821 \frac{\mathrm{~L} \cdot \mathrm{~atm}}{\mathrm{~mol} \cdot \mathrm{~K}}$

Practice Problems!

2. What is the volume \qquad g of oxygen gas at \qquad kPa and
\qquad ${ }^{\circ} \mathrm{C}$?

3. A \qquad g sample of nitrogen dioxide gas occupies \qquad liters at SP. What is the temperature of the gas in Kelvin? In Celsius?
4. When the pressure in a certain gas cylinder with a volume of \qquad L reaches \qquad atm, the cylinder is likely to explode. If this cylinder contains \qquad moles of argon at \qquad ${ }^{\circ} \mathrm{C}$, is it on the verge of exploding? Calculate the pressure in atmospheres.

Exam Date:

- Physical Characteristics of Gases (Chapter 10)
\checkmark Kinetic-molecular theory / focus on energy of particles
\checkmark ideal gas / real gas
$\checkmark \quad 5$ assumptions for ideal gases
\checkmark physical properties of gases - expansion / fluidity / density / compressibility / diffusion / effusion
\checkmark variables to measure - volume / pressure / temperature / amount in moles
\checkmark pressure / units
\checkmark STP
\checkmark gas laws - Boyles / Charles / Gay-Lussac's / Combined / Dalton's partial pressures
- Molecular Composition of Gases (Chapter 11)
\checkmark combining volumes of gases in reaction / Avogadro's law
\checkmark molar volume
\checkmark ideal gas law

