<u>UNIT EIGHT</u>: Chapter 10 \sim Physical Characteristics of Gases

Kinetic-Molecular Theory

★ A theory developed in the late 19th century based on the idea that particles of matter

	are _			
	Ŷ	All particles also have		
*	Can b	be used to explain the properties of,,		, and
		by the of the particles and the		that
	act b	etween them.		
	¢	have enough KE to		
		, but not to	00000	-
		out of position.		
	¢	have enough KE to	.com/file/view/image008.jpg/2238112	40/image008.jpg
		over and around one another, but the particle	es are still	
		together.		
	¢	have enough KE to		

from one another.

Kinetic-Molecular Theory of Gases

★ 1	Provides a model of an		
* /	An	is an	gas that perfectly fits
ä	all the assumptions of the	e kinetic-molecular theory (K	-MT).
* I	deal gases	consider the interactior	ns between the gas particles
ä	and	how gases actually exist.	
Assur	nptions of Kinetic-M	lolecular Theory	
* 1	 Gases consist of 	numbers of	particles that are
-	rela	tive to their	
	♦ Molecules of gases	are much than those of	
		•	attp://www.mitedu/~kardar/teaching/projects/chemotaxis(AndreaSchmidt)/gas_particles.gif
	♦ Most of the	occupied by a	gas is space.
* 2	2. Collisions between	particles and betwo	een particles and container
_	are	collisions.	

♦ Meaning, there is no net loss of ______

★ 3. Gas particles are in		
T	hey therefore posse	ss KE
().	
★ 4. There are no forces of	or	
between	particles	http://www.mitedu/~kardar/teaching/projects/chemotaxis(AndreaSchmidt)/gas.par
★ 5. The average	of gas part	icles depends on the
of the gas.		
♦ Since all of the particles of the the kinetic energy depends or	e same n the	have the same,
• KE = $\frac{1}{2}$ mv ²		
Average speed and kine	etic energy will	with
		and vice versa.
o if they aren't ideal, what are th	ey?	1 1
★ Gases that deviate from		
behavior are called	CARBON DIO	
•		Mrpownder.org

\diamond	: a gas that	completely

according to the assumptions of the K-MT.

How gases ______.

Ideal Gas vs. Real Gas

Ideal Gas	Real Gas
There are attractive or repulsive forces between particles.	There are attractive and repulsive forces between particles.
Particles have volume.	Particles have a volume.
Collisions are (no loss in total kinetic energy)	Collisions are (gas particles lose energy when they collide)

Real Gases

\star The conditions in	gases that make them	from
	behavior (and the K-MT assumptions) ar	·e:
♦		
♦		
♦		
★ These conditions	make the gas particles move	together which
will	their collisions and the attractive	between
them.		
Physical Properties	of Gases	
*		
♦ Gases do no	t have	
♦ Gases	fill any container in	
which they a	are enclosed and will	http://web.princeton.edu/sites/ehs/cylinders.jpg

* _					
	♦ Gas particles	past on	e another.		
	 **Property sim 	ilar to	**		
	\diamond Gases and liquids are	both referred to as fluids	because the	еу	
*_				\bigcirc	\bigcirc
	♦ Gases are	dense than the	22	Villa	*
	or	state of the	Gas http://upload.wikimedia.org	Liquid g/wikipedia/commons/thumb/8/89	Solid 9/States_of_matter_En.svg/22
	subs	tance.	0px-States_of_matter_En.svg	png	
	• Particles in a _	are about	times	s farther ap	oart than
	those in a				
	Therefor	e, there is a lot of	spa	ace betwee	en the
	particles				
* _					
	\diamond Gas particles that we	re initially	can be		

_____together.

♦ _	: a process by which particles pass	
tł	rough a	
	of effusion depends on:	
	The particles'	
	The particles'	
	Molecules of mass effuse faster than molecules of	
	mass.	

★ Diffusion vs. Effusion

What is Pressure?

★ Pressure can be defined as the _____

★ Gas molecules exert	on any surface with which they	
·		
♦ Depends on	,, and the number of	
	_present.	
★ The	also exerts pressure.	
How is Pressure Measured?		
★ There are two devices used	to measure pressure:	
∻	: used to measure atmospheric pressure	

sample

MANOMETER

Units of Pressure

Standard Temperature and Pressure

★ Used for purposes of	among scientists
★ Abbreviated	
\star At STP, the temperature is _	°C (or K) and the pressure is
atm (or	_kPa).
Temperature	
★ Temperature is a measure	of the
in an object.	
★ Temperature scales:	
∻	$ ightarrow$ based on boiling point and freezing point of water
∻	→ based on absolute zero
Temperature Conversions	
★ Celsius (t) to Kelvin (T)	

★ Kelvin (T) to Celsius (t)

♦_____

Temperature Conversion Practice Problems

<u>Ex. 1:</u>

<u>Ex. 4:</u>

<u>Ex. 2:</u>

<u>Ex. 5:</u>

<u>Ex. 3:</u>

<u>Ex. 6:</u>

The Gas Laws

★ Simple ______ relationships between gas variables of:

Boyle's Law

*		
★ States that the	of a fixed mass of	gas
varies	with the	at
constant	·	Pare C
☆ k =	where k is a	http://www.mit.edu/-kardar/teaching/projects/chemotaxis(Andree Schmidt)/gas.particles.gf
* Variables:		
* Constants:		

★ Boyle's Law can be used to compare changing conditions for a gas, where:

♦ _____ = final conditions

How to Solve Boyle's Law

★ The equation for Boyle's Law:

\star Units of pressure (P₁ and P₂) must be the _____

♦ Can be ______

\star Units of volume (V₁ and V₂) must be the _____

♦ Can be ______

★ Must show all of your work!

Practice Problems!!

2. A balloon initially had a volume of ______ L. When the gas inside the balloon was allowed to expand to a volume of ______ L, the pressure was ______ atm. Assuming constant temperature, what was the initial pressure of the gas in the balloon, in atm?

Charles' Law

* *	States that the constant	of a fixe	d mass of gas at with the	energie de la constante de la
		_temperature		http://www.rapidoniline.com/catalogueimages/Module/M075368P01WL.jpg
Ŧ	$\diamond k = $	where k is a	value	
×	variables:			
*	Constants:			
*	Charles' Law can	n be used to compare cha	nging conditions for a	gas, where:
	♦	= initial cond	litions	

♦ _____ = final conditions

How to Solve Charles' Law

★ The equation for Charles' Law:

★ Units of volume(V₁ & V₂) must be the _____

♦ Can be ______

★ Units of temperature (T₁ & T₂) _____ be in Kelvin!

♦ Gas ______ and Kelvin (not Celsius) ______ are

_____ proportional to each other.

★ Must show all of your work including temperature conversions!

Practice Problem!

1. A balloon was inflated in a room at _____°C. The balloon was then heated to a temperature of _____°C and reached a volume of _____ liters. What was the original volume of the balloon if the pressure remained constant?

Gay-Lussac's Law

*				
*	States that the _	of a fixed	mass of gas at	ALC?
	constant	varies	with the	http://www.chemistryexplained.com/images/chfa_02_img0361.jpj
		_ temperature		
	♦ k =	where k is a	value	
*	Variables:			
*	Constants:			
*	Gay-Lussac's La	w can be used to compare	changing conditions fo	or a gas, where:

♦ _____ = final conditions

How to Solve Gay-Lussac's Law

★ The equation for Gay-Lussac's Law:

P

★ Units of pressure (P₁ & P₂) must be the _____

♦ Can be ______

***** Units of temperature $(T_1 \& T_2)$ **<u>must</u>** be in _____ !

★ Must show all of your work including temperature conversions!

Practice Problem!

The pressure in a car tire is _____ kPa. After a long drive, the tire has a pressure of _____ kPa and a temperature of _____ °C. Assuming the volume did not change, what was the temperature, in °C, of the air in the tire before the drive?

Expresses the	relationship between	//	
	, of a fixed	, of gas	
∻ k =	where k is a	value	
variables:			-
Constant:			
c Combined Gas	Law can be used to compar	e changing conditions for a	a gas, whei
♦	= initial conditi	ons	
٨	- final conditio	20	

\star The equation for Combined Gas Law:

Units of volume(V ₁ & V ₂) must be the	
♦ Can be	
★ Units of temperature $(T_1 \& T_2)$ must be in	!
\star Units of pressure (P ₁ & P ₂) must be the	
♦ Can be	

★ Must show all your work including temperature conversions!

4 Laws in 1

Practice Problems!!

1.The volume of a gas filled balloon is _____ L at ____ K and_____ kPa of pressure. What would the volume be at STP?

ton's Law						
States that the		pressure o	fa			
	of gases is		to the		http://scienceworld.wolfram.com/biography/pics	/Dalton.jpg
of the	pressures	of the com	ponent ga	ases		
♦			: the	pressure o	f each gas in a mi	xtu
			\mathbf{P}	_ (?	
02		r H₂O	CO2	_	AIR	
20.9	78.1 0.	97 1.28	0.05	1	01.3	
ton's Law Equat	ion					

* \	Where,	= total	pressure
-----	--------	---------	----------

_____ = partial pressures

★ Pressures <u>must</u> be in the _____ units

♦ Can be ______

Practice Problem:

1. A mixture of three gases, A, B, and C, is at a total pressure of ______ atm. The partial pressure of gas A is ______ atm; that of gas B is ______ atm. What is the partial pressure of gas C?

Gas Collected by Water Displacement (Application of Dalton's Law)

★ A way of collecting _____ in the laboratory

\star Gas collected in this way is always mixed with	and is
therefore not	
\diamond Water vapor also exerts a pressure (because it is a	_), known as
★ When the water levels inside and outside of the bottle are the	 , the
pressure inside the bottle would be the same as t	he
pressure.	

How to Solve Water Displacement by Gas

 \star ______ is read from a barometer in the lab

★ _____ can be found in a table

♦ Table A-8 on page 899 in your textbook!!

Practice Problem!

1. A chemist collects a sample of $H_2S_{(g)}$ over water at a temperature of _____°C. The

total pressure of the gas that has displaced a volume of _____ mL of water is

_____ kPa. What is the pressure of the H₂S gas collected?

Chapter 11 \sim Molecular Composition of Gases

Gay-Lussac's Law of Combining Volumes of Gas

* States that at constant ______ and _____, the

_____ of gaseous reactants and products can be expressed as

_____ of small whole numbers

 \diamond Examples:

Avogadro's Law

*	States that equal	of gases at the same			
		_and	contain equa	l numbers of	
		-			
	$\diamond~$ The gas volume is		proportional to th	e amount of gas,	
	at given temperat	ure and pressure.			
*	Variables:				
*	Constants:				
Mola	ar Volume of Gases				
*	According to Avogadro's	s Law, one mole of any	gas will occupy the s	ame	
		as one mole of any oth	her gas at the same		
	ar	nd	, despite	differences.	
	$\diamond~$ The volume occup	ied by	of a gas at _	is	
	known as the			of a gas.	
	• Molar volun	ne =	Mer	morize!!	

The Ideal Gas Law

★ Introduces	of gas (measured in) as a 4 th variable,
★ As the number of	increases (at co	nstant volume and
temperature) the	increases.	
★ As the number of	increases (at co	nstant pressure and
temperature) the	increases.	
★ Therefore, all four v	ariables are	
hat's the Ideal Gas I	.aw?	
* A	relationship among	

_____, and the number of ______ of a gas.

* States that the ______ of a gas varies ______ with the

number of _______ of a gas and its Kelvin _______. The

______also varies ______ with ______.

How to Solve the Ideal Gas Law

★ The equation for the Ideal Gas Law:

★ Units of pressure (P) can be _____

★ Units of volume(V) <u>must</u> be in _____

★ Units of temperature (T) <u>must</u> be in _____!

★ Units of amount (n) <u>must</u> be in _____

♦ May need to covert from _____ → moles

★ Must show all of your work including temperature conversions!

The Ideal Gas Constant

★ The constant _____ is known as the _____

 \diamond Value depends on the chosen units for _____.

$$R = 8.314 \frac{L \cdot kPa}{mol \cdot K} \qquad \qquad R = 0.0821 \frac{L \cdot atm}{mol \cdot K}$$

Practice Problems!

1. A child's lungs can hold _____L. How many grams of air do her lungs hold at a pressure of _____kPa and a body temperature of _____°C? Assume the molar mass of air is 29.0 grams.

2. What is the volume _____ g of oxygen gas at _____ kPa and

____°C?

- 3. A ______ g sample of nitrogen dioxide gas occupies ______ liters at

 SP. What is the temperature of the gas in Kelvin? In Celsius?

4. When the pressure in a certain gas cylinder with a volume of _____ L reaches _____ atm, the cylinder is likely to explode. If this cylinder contains _____ moles of argon at _____°C, is it on the verge of exploding? Calculate the pressure in atmospheres.

• Physical Characteristics of Gases (Chapter 10)

- ✓ Kinetic-molecular theory / focus on energy of particles
- ✓ ideal gas / real gas
- ✓ 5 assumptions for ideal gases
- ✓ physical properties of gases expansion / fluidity / density / compressibility / diffusion / effusion
- ✓ variables to measure volume / pressure / temperature / amount in moles
- ✓ pressure / units
- ✓ STP
- ✓ gas laws Boyles / Charles / Gay-Lussac's / Combined / Dalton's partial pressures

• Molecular Composition of Gases (Chapter 11)

- ✓ combining volumes of gases in reaction / Avogadro's law
- ✓ molar volume
- ✓ ideal gas law