<u>Unit Seven</u>: Chapter 8 ~ Chemical Equations and Reactions

Chemical Reactions

• A	• A is the process by which	
substances are	into one or more differe	ent substances.
 Creates 	substances with	properties.
★		
• Also called a		
Indicators of a Chemi	cal Reaction	
•	:	
0	(small amount of gas formed)
0	(more gas formed)	
0	(large amount of gas formed)
•	:	
0	O	
0	O	

0			O
0			O
0	May_		_ to the bottom of liquids
0	May_		_ on top of liquids
	×	Looks like a	material
al	Equa	ations	
al	Equa	ations	_ form of a chemical reaction using:
°	Equa	Ations For elements	form of a chemical reaction using:
• •	Equa	Ations For elements For compounds	form of a chemical reaction using:
o 0	Equa	Ations For elements For compounds	form of a chemical reaction using:
o	Equa 	Ations For elements For compounds Number in	form of a chemical reaction using:

Chemical Equations

•	→
0	→
0	One or more substances (elements/compounds) that a reaction
•0	One or more
• Spec	ial symbols:
0	means yields / forms / makes / produces
0	means plus / and / combined with
0	means solid
	▼ Or (crystalline)
0	means liquid
0	means gas
0	means aqueous solution
	¥

 \circ Terms written _____ \rightarrow means the item is needed for the

Law of Conservation of Mass

X

- This is why ______ chemical reactions ______

Example Problems

• <u>Ex. 1:</u> $Ag_2O(s) \rightarrow Ag(s) + O_2(g)$

• <u>Ex. 2:</u> Al(s) + $NiSO_4(s)$ → Ni(s) + $Al_2(SO_4)_3(s)$

• <u>Ex. 3:</u> Magnesium metal plus hydrochloric acid yields hydrogen gas and magnesium chloride.

• <u>Ex. 4</u>: Sodium metal and water react to form aqueous sodium hydroxide and hydrogen gas.

• <u>Ex. 5</u>: Calcium metal plus iodine react to produce calcium iodide.

• <u>Ex. 6:</u> $C_3H_8(g)$ + $O_2(g) \rightarrow CO_2(g)$ + $H_2O(l)$

Ex. 7: Aqueous magnesium nitrate reacts with aqueous potassium hydroxide to form solid magnesium hydroxide and aqueous potassium nitrate.

**From UNIT 6: Extra Practice Naming and Writing Compounds:

- Dr. Alan's Chemistry Site: http://chemistry.alanearhart.org/Quizzes/Nomenclature/ 0
 - He offers quizzes with TONS of practice problems. In the drop down section, select from Binary Molecular 0 Compounds, Binary Ionic Compounds, and/or Polyatomic Ionic Compounds!

Extra Practice Balancing Chemical Equations:

- Dr. Alan's Chemistry Site: <u>http://chemistry.alanearhart.org/Quizzes/Stoichiometry/</u> 0
 - He offers quizzes with TONS of practice problems. In the drop down section at the bottom of the page, select 0 Balancing Chemical Equations. I'd suggest writing these problems on loose-leaf and keeping them in your homework binder so I can help you if you had any trouble with them.

Types of Chemical Reactions

So many chemical reactions can occur or are occurring that it would be

to predict their products if it was not possible to place

many of them into ______.

Based on the ______ in reactions.

Synthesis Reactions

	substances () combine to form
	().
General Equation:		
0		
▼ A and B c	an be	·
≭ AB is a	·	
Example: 2 Mg(s) + ($D_2(g) \rightarrow 2 MgO(s)$	
omposition Reaction)ns () undergoes a reaction
that produces	simpler s	ubstances ().
	of synthesis reactions.	
Most decomposition	eactions take place only when	in the form
of		
of o The decomposi	tion of a substance by an	is

• General Equation:	
0	
➤ AB is a	
► A and B can be	
• Example: electricity $\circ 2 H_2 O (l) \longrightarrow 2 H_2(g) + O_2(g)$	
 ingle Replacement Reactions Also known as	
• replaces a similar	in a
() to form a	
().	
 Many take place in 	_ solution.
 Amount of 	_ than in synthesis and
decomposition reactions.	

General equation:		
0		
 Positive oxidati 	on (metal)	positive oxidation (metal).
• A and B are		
• BC and AC are		
• Example: Mg(s) + 2 HCl(ad	$H_2(g) \rightarrow H_2(g) + MgCl_2(aq)$	
General equation:		
0		
 Negative oxidat 	ion (nonmetal)	negative oxidation
(nonmetal).		
• A and C are		
• BC and BA are		
• Example: Cl ₂ (g) + 2 KBr(aq) → 2 KCl(aq) + Br₂(l)	

Double Replacement Reactions

The	of two	() exchange
places in	solutio	on to form two new	
().		
• One o	f the		formed is usually:
×	A		
×	An insoluble	that	out of the solutior
×	Or a	,	, usually
o The o	ther compound is ofter	1	and remains
	in the sol	lution.	
General Equ	ation:		
0			
o All ar	e		

Combustion Reactions

n of

- Example: $CH_4(g) + 2 O_2(g) \rightarrow CO_2(g) + 2 H_2O(l)$
- **Balancing Tip:** For combustion reactions, if there is no oxygen in the hydrocarbon reactant, an odd number coefficient cannot proceed water in the products. Take the odd number that would be necessary and **double** it, then balance the rest of the equation from there.

Abbreviations

- Synthesis (_____)
- Decomposition (_____)
- Single replacement/displacement (______ or _____)
- Double replacement/displacement (______ or _____)
- Combustion (_____)

Activity Series

•	The ability of an element to is referred to as the element's		
	 The more an element reacts with other substances, the 		
	its activity is.		
•	Activity series can be defined as		
	 This is based on their 		
	 For metals, greater activity means a greater ease of of electrons. 		
	This forms		
	 For nonmetals, greater activity means a greater ease of of 		
	electrons. This forms		
•	The activity series is usually determined by		
	reactions.		
•	In the activity series, the most active element is placed at the and		
	can replace each of the elements it from a compound in a		
	reaction.		

o An ele	ment farther down in the activity series can replace any element
	it but not any it.
Activity seri	es are used to help
Examples:	
o 2Al(s)	+ $3\text{ZnCl}_2(aq) \rightarrow 3\text{Zn}(s) + 2\text{AlCl}_3(aq)$
•	According to the activity series, Al is located Zn and
	therefore to replace Zn in a compound.
o Co(s)	+ 2NaCl(aq) \rightarrow no reaction
•	According to the activity series, Co is located Na and i
	therefore to replace Na in a compound so the
	reaction
It is importa	int to remember that like many other aids used to predict the produc
of chemical	reactions, activity series are based on

Chapter 9 ~ Stoichiometry

Recipes

• What does a recipe tell you?

• The ______ amount of ______ to use in order to obtain

a ______ amount of ______.

Recipes & Balanced Equations

• A ______ chemical equation tells you what amounts of ______

to mix and what amounts of ______ to _____.

Chemists use balanced equations as a _____ how

much ______ is needed or ______ is formed in a reaction.

▼ When you know the quantity of ______ substance in a reaction, you

can calculate the quantity of ______ substance

_____ or _____ in the reaction!

Quantity can be measured in terms of ______

___, _____, _____, _____, Or

What is Stoichiometry?

•	is the calculation of the quantities of
and	involved in a chemical reaction.
0	;
≭ 1	
≭ 2	
	• mole =
	• mole =
	•
ole-Mole Ratio	
• The	is a conversion factor derived from the
of a	chemical equation.
◦ Used to _	between moles of
between	moles of, or between moles of
• Example: N ₂ + 3	$3H_2 \rightarrow 2NH_3$

16

Solving Stoichiometry Problems

- Check to make sure the equation is ______.
- 1. ______ the given quantity (usually ______) to moles.
- 2. ______ the mole-mole ratio.
- 3. ______ to the desired units (usually ______).
- HINTS 😳:
 - If you start with _____, you do not need step #____.
 - If you need to end with _____, you do not need step #____.
 - You <u>ALWAYS</u> need step #____.

Example Problems!

• How many moles of sodium bromide will be produced when _____mol of bromine reacts with sodium iodide to form sodium bromide and iodine?

• Suppose _____ g of aluminum reacts with sulfur to produce aluminum sulfide. How many moles of sulfur will be needed in this reaction?

• Nitrogen can react with hydrogen to produce ammonia (NH₃). How many grams of nitrogen will be needed to produce _____ mol of ammonia?

• In a reaction between carbon and oxygen, _____ g of carbon dioxide is formed.

How many grams of carbon were burned?

Extra Practice with Stoichiometry:

- o Dr. Alan's Chemistry Site: <u>http://chemistry.alanearhart.org/Quizzes/Stoichiometry/</u>
 - He offers quizzes with TONS of practice problems. In the drop down section at the bottom of the page, select Stoichiometry. Check the box to limit the molar masses to one decimal place. (**NOTE:** Your answers may not match up exactly with his due to rounding since we take the molar masses out to two decimal places). I'd suggest writing these problems on loose-leaf and keeping them in your homework binder so I can help you if you had any trouble with them.

Reinforcement Problems!

 1. One reaction that produces hydrogen gas can be represented by the following unbalanced chemical equation. What mass of HCl is consumed by the reaction of ______mol of magnesium?

$$Mg(s) + HCl(aq) \rightarrow MgCl_2(aq) + H_2(g)$$

• 2. Acetylene gas (C₂H₂) is produced as a result of the following **balanced** reaction.

3. When sodium chloride reacts with silver nitrate, silver chloride precipitates. The other product is sodium nitrate. What mass of AgCl is produced from ______ g of AgNO₃?

• 4. Copper reacts with silver nitrate through single replacement. If ______ g of silver are produced from the reaction, how many moles of copper (II) nitrate are also produced?

• 5. Iron is generally produced from iron ore through the following **unbalanced** reaction in a blast furnace.

 $Fe_2O_3(s) + CO(g) \rightarrow Fe(s) + CO_2(g)$

If ______ kg of Fe₂O₃ are available to react, how many moles of CO are needed?

• 6. Aspirin, C₉H₈O₄, is produced through the following **balanced** reaction of salicylic acid, C₇H₆O₃, and acetic anhydride, C₄H₆O₃:

 $C_7H_6O_3(s) + C_4H_6O_3(l) \rightarrow C_9H_8O_4(s) + HC_2H_3O_2(l)$

What mass of aspirin (in kg) could be produced from _____ mol of salicylic acid?

Limiting Reactants

Warm-Up

• You find 6 slices of bread, 9 pieces of meat, and 2 pieces of cheese in your kitchen.

- Each sandwich must have 2 pieces of bread, 3 pieces of meat, and 1 piece of cheese.
- How many sandwiches can you make with the ingredients you found in your kitchen?
- What ingredient limits the amount of sandwiches you can make?
- How many ingredients do you have left over?

Limiting and Excess Reactants

_____: the reactant that determines the ______

of product that can be _____ by a chemical reaction

The _______ is ______ used up in a

chemical reaction.

_____: the reactant that is ______
in a chemical reaction

Example Problems!

• 1. Some rocket engines use a mixture of hydrazine, N₂H₄, and hydrogen peroxide, H₂O₂, as the propellant. The reaction is given by the following **balanced** equation:

 $N_2H_4(l)$ + $2H_2O_2(l)$ \rightarrow $N_2(g)$ + $4H_2O(g)$

 $\circ~$ Which is the limiting reactant in this reaction when _____ mol of N_2H_4 is

mixed with _____ mol H_2O_2 ?

• How much of the excess reactant, in moles, remains unchanged?

- 2. In a reaction chamber, _____ mol of aluminum is mixed with _____ mol of chlorine gas to produce aluminum chloride.
 - Determine the balanced equation.

• What is the limiting reactant? What is the excess reactant? Label them in the balanced equation.

• How much of the excess reactant is left over, in moles, after the reaction goes to completion?

• What is the amount, in moles, of aluminum chloride produced?

• 3. _____ g of gold (III) sulfide reacts with _____ g of hydrogen gas to produce elemental gold and hydrogen sulfide.

 \circ Determine the balanced equation.

• What is the limiting reactant? What is the excess reactant? Label them in the balanced equation.

 How much of the excess reactant, in grams, is left over after the reaction goes to completion?

• What is the amount, in grams, of elemental gold produced?

- 4. When C₃H₈ burns in oxygen, CO₂ and H₂O are produced. If _____ g of C₃H₈ reacts with _____ g of O₂, how much CO₂ is produced?
 - $\circ~$ Determine the balanced equation.

• What is the limiting reactant? What is the excess reactant? Label them in the balanced equation.

• How much of the excess reactant, in grams, is left over after the reaction goes to completion?

• What is the amount, in grams, of carbon dioxide produced?

Percent Yield

Theoretical Yield

• The	amount of product that c	an be from
a given amount of read	ctant.	
\circ The value that h	as been	_ using a stoichiometry problem.
Actual Yield		
• The	amount of a product ob	tained from a chemical reaction.
Percent Yield		
• The	_ and yields	are used to calculate the
•	is the ratio of the	yield to the
yie	eld, multiplied by	

Example Problems:

 1. Methanol (CH₃OH) can be produced through the reaction of carbon monoxide and hydrogen gas in the presence of a catalyst. If ______g of CO reacts to produce ______g CH₃OH, what is the percent yield of CH₃OH? 2. Quicklime, CaO, can be prepared by roasting limestone, CaCO₃, according to the chemical equation below. When ______ g of CaCO₃ are heated, the actual yield of CaO is ______ g. What is the percentage yield?

 $CaCO_3 \rightarrow CaO + CO_2$

 O_2 produces ______ g of H_2O , what is the percent yield?

 C_2H_4O + O_2 \rightarrow CO_2 + H_2O

- 4. $Mg + HNO_3 \rightarrow Mg(NO_3)_2 + H_2$
- If I start this reaction with ______g of magnesium and an excess of nitric acid, how many grams of hydrogen gas should I be able to produce? If ______g of hydrogen was actually produced, what was my percent yield of hydrogen?

Exam Date: _____

- Chemical Equations & Reactions (Chapter 8)
 - ✓ chemical reaction / indicators of reaction
 - ✓ Law of Conservation of Mass
 - ✓ balancing equations (coefficients / special symbols)
 - ✓ types of reactions
 - ✓ activity series
- Stoichiometry (Chapter 9)
 - ✓ mole ratio / molar mass / balanced equations for chemical reactions
 - ✓ solve for amount of R or P in moles or mass
 - ✓ limiting reactants
 - ✓ % yield / theoretical yield / actual yield