Simplifying/Reducing Fractions

Simplifying (or reducing) fractions means

Why write $\frac{4}{8}$ when you can write $\frac{1}{2}$?
4/8
(Four-Eighths)

$=>$
2/4
(Two-Quarters)

$=\gg$
(One-Half)

How to Simplify a Fraction:

Try to evenly divide

Ex) Simplify the fraction $\frac{12}{54}$

1. We can divide the numerator and denominator both by 2 , and we end up with $\frac{6}{27}$

$$
\frac{12}{54}=\frac{6}{27}
$$

2. We can simplify further by noticing that we can divide 6 AND 27 by 3 to get $\frac{2}{9}$

Ex 2) Simplify the fraction $\frac{10}{35}$

1. When we try to divide the numerator and denominator both by the same number, we soon realize that 2, 3 and 4 do not divide evenly into both numbers. However, 5 does divide evenly into both numbers, giving us $\frac{2}{7}$

Additional Examples: Simplify the following.
a) $\frac{22}{24}=$
b) $\frac{4}{28}=$
c) $\frac{15}{27}=$
d) $\frac{6}{20}=$

Equivalent Fractions

Equivalent fractions

"Change the bottom if you multiply or divide, And the same to the top must be applied"
(** What is done to the numerator MUST be done to the denominator, and via versa, for the fractions value to remain the same!!!**)

Here is why those fractions are really the same:

Any given fraction has an infinite amount of equivalent fractions.

$\times 2$

$\times 3$

$\times 5$
$\times 7$
$\frac{2}{5}=\frac{14}{35}$
$\times 7$

Additional examples:
Find 2 fractions that are equivalent to the given fraction.
a) $\frac{3}{8}=$
b) $\frac{2}{3}=$
c) $\frac{7}{9}=$

Now lets try something a bit more challenging. Fill in the empty spaces.

1) $\frac{2}{3}=\frac{}{9}$
2) $\frac{2}{5}=\frac{}{15}$
3) $\frac{1}{7}=\frac{}{14}$
4) $\frac{3}{3}=\frac{}{9}$
5) $\frac{3}{4}=\underline{9}$
6) $\frac{1}{2}=6$
7) $\frac{5}{6}=\frac{}{18}$
8) $\frac{1}{5}=3$
