Unit Two: Chapters 3 & 22

Calculations in Scientific Notation

In	my	cal	[cu]	lato	r
	7	CU	Cu	u	-

• Use the	button to represent "x 10"	
Multiplication		
Coefficients are	and exponents are	·
• Use	in the calculator.	
• Round to the		
• Ex.		
Division		
Coefficients are	and exponents are	·
• Use	in the calculator.	
• Round to the		
• Ex.		

Atomic Theory

Democritus

- Ancient Greek philosopher
- "Laughing philosopher"

http://d1jqu7g1y74ds1.cloudfront.net/wp

- o All matter is composed of ______
 - He called these particles ______.

John Dalton

- English chemist
- Gathered evidence favoring _____

 particle theory of matter
- Provided an explanation for three already existing laws:

- o 1. Law of _____
- o 2. Law of _____
- o 3. Law of _____

Law of Conservation of Mass

	s that:		
0		 	
_			
of De	finite Proportions		
States	that:		
0			
of Mu	lltiple Proportions		
States			
States	s that:		
States	s that:		
States	s that:		

oor	
0	
• If we have 1.0 g of C, t	then we have
\circ 1.33 g of O_2 con	nbining with carbon to form CO
\circ 2.66 g of O_2 con	nbining with carbon to form CO ₂
• The ratio of oxygen (r	nass) between the two compounds is then
Dalton's Atomic Theor	${f y}$
• 1. All matter is compo	osed of
o An	is an extremely small particle of matter that retains its
identity during	<u> </u>
• 2. Atoms of a given _	, are identical in,,
and	; atoms of
differ in,	, and
o An	is a type of matter composed of only one kind of atom.
• 3. Atoms cannot be _	

• $C + O_2$ yields:

oms of elements combine in whole-
per ratios to form chemical
are two or more different elements that are
chemically combined.
chemical reactions, atoms are
Atomic Theory
sed Dalton's Atomic Theory
Today, we know that
 But, the
still holds true for chemical reactions.
Scientists have also come to know that a given element can have
Referred to as ""

Discovery of the Electron

- _____
- 1897
- Discovers the electron through his

_____ experiment

performed experiments confirming the

______ charge of an ______.

• _____ of an electron: -1.60218 x 10⁻¹⁹ C

http://www.biography.com/imported/images/Biography/Images/Pro

Gold Foil Experiment

- 1911, _____

http://upload.wikimedia.org/wikipedia/commons/5/5c/Ernest_Rutherford_cropped.jj

_____bundle of _____ with a _____electric charge at the _____.

- Called this the "_____"
- Suggested that the _____ were surrounding the

_____, though he

http://www.google.com/imgres?imgurl=&imgrefurl=http%3A%2F%2F www.docstoc.com%2Fdocs%2F2197377%2FHistory-of-the-Atom-Timeline&h=0&w=0&sz=1&tbnid=6_F6as1gf4fveM&tbnh=194&tbnw=2 \$P&zoom=1&docid=anSswWer_bWpdMei=WittBurtxCola&y&mHHw

couldn't explain what kept them in motion.

s64u/goid+roii+diagram.jpg

7

Discovery of the Proton

Discovered that the _	nu	clei (), form when
alpha particles strike	some of the lighter eleme	ents.	
0	: a nuclear particle ha	ving a	charge
equal to that of	the	and a mass more	than 1800 times tha
of the electron.			
of	a proton: 1.673 x 10 ⁻²⁷ kg	Ş	
Protons in a	give the	its	charg
of	a proton : +1.60218 x 10 [.]	-19 C	
		нир/	
overy of the Neutr	5	/www.nobelprime.org/nobel_ urentey/1935/chadood	
•	5	/www.nobel.prize.org/nobel_prizes/physics/ha wreates/1935/chadwick.jpg	
1932	5	weather first org/nobel untass/physics/hallouck.pg	of an atom

• _____ of a neutron: 1.675 x 10⁻²⁷ kg

• ______ of a neutron: 0 C

Summary

Particle	Discovered By	Year	Mass (kg)	Charge (C)	Location
Electron			9.109 x 10 ⁻³¹	-1.60218 x 10 ⁻¹⁹	
Proton			1.673 x 10 ⁻²⁷	+1.60218 x 10 ⁻¹⁹	
Neutron			1.675 x 10 ⁻²⁷	0	

Atomic Structure

Parts	ofan	Atom
I UI U	OI GI	

•	Protons	(n+)
-	1 1 0 00113	1 1

o _____charge

o Located in the _____

• Neutrons (n⁰)

o _____charge

o Located in the _____

- Electrons (e-)
 - o _____ charge
 - o Located _____

Periodic Table

- Atomic Number (Z)
 - o The number of ______ in the nucleus of each atom of that element.
 - o Atoms of the same element have _____
 - _____.
 - o This number _______.
 - o #_____=#___

	0	The number of	in the nucleus of an atom.
	0	Whole number rounded from the	
Atomic			
_		Mass of only	, but there can be
		than one isotope of a given of	element so we need to take the
			_ (which is still measured in amu).
•	0	The weighted of the	atomic masses of the
		isotopes of an eler	nent
	0	Measured in or "	"
		One is exactly t	the mass of 1/12 of a carbon-12 atom
Isotope	es		
• Iso	oto]	pes of an element have the	
_	0	Results in	

• Mass Number (A)

- - o **Ex.** Nitrogen 14 and Nitrogen 15

$$^{14}_{7}$$
 N

Calculating Average Atomic Mass

- Nitrogen 14
- Nitrogen 15
- o _____% natural abundance

o _____% natural abundance

o Mass: 14.0030740048 amu

o Mass: 15.0001088982 amu

Average Atomic Mass: Nitrogen

- = (Abundance x Mass) + (Abundance x Mass)
- $= (0.9963 \times 14.0030740048 \text{ amu}) + (0.0037 \times 10.0037 \times 10.0037$

15.0001088982 amu)

- = (13.95126263 amu) + (0.055500403 amu)
- = 14.00676303 amu
- = 14.01 amu

Neutrons

• How do we determine the number of neutrons?

$$^{14}_{7}$$
 N

$$^{15}_{7}\,\mathrm{N}$$

- Nitrogen 14 has ______ neutrons
- Nitrogen 15 has ______ neutrons

Element	Average Atomic Mass	Atomic #	Mass #	Protons (p+)	Electrons (e ⁻)	Neutrons (nº)	Nuclear Symbol (^A X)
1. potassium							
2.	32.06						
3.		30					
4.		53					
5.			23				
6.				47			
7.					38		
8.						30	
9. Vanadium							
10.		9					
11. Copper							
12.			84				

Introduction to the Mole

Specified Numbers

- 1 dozen = _____ items
- In order to count the number of ______ in a substance, chemists also use a specified number.
 - o It is a unit called the ______.
- 1 mol = representative particles

Representative Particles

- _____: elements are made up of atoms
 - \circ Ex. He is made up of He atoms
- ______: diatomic molecules and covalent compounds are made up of molecules
 - $\circ \ \underline{Ex}. \ H_2O \ is \ made \ up \ of \ H_2O \ molecules$

•: atoms or groups of atoms with a charge	
o Ex. K^{1+} , Ca^{2+} , N^{3-} , CO_3^{2-}	
•: ionic compounds are made up of for	rmula units
○ Ex. CaCl ₂ is made up of CaCl ₂ formula units	
Recap! • A mole of any substance contains of	
representative particles, or representative	
particles.	http://www.bulldog.u-net.com/avogadro/imgs/avogad.gif
Mass of a Mole of an Element	
Mass of a single atom called the	can be
expressed in	
• The of an element expressed in	is the
of the element.	
0	
• Ex. Molar Mass of Nitrogen =	
o 14.01 amu =	

o Molar mass of Nitrogen= 14.01 ______ or 14.01 _____

Calculating the Molar Mass

• Platinum (Pt)	• Strontium (Sr)
O	o
• Bromine (Br)	• Lead (Pb)
0	0
• Thorium (Th)	• Cadmium (Cd)
o	o
Recap!	
What is the molar mass of an elemen	t?
o	
How do we find the molar mass?	
0	
 How is the molar mass expressed? 	
0	

Factor-Label Method

G = what you are given

W = what you want to find

C = cancel (diagonal)

The number of significant figures in the final answer is equal to the number of significant figures in the given quantity.

Mole Roadmap!

Mole-Mass-#Particles Conversions

<u>Ex</u>. 1:

<u>Ex</u>. 2:

<u>Ex</u>. 3:

<u>Ex</u>. 4:

<u>Ex</u>. 5:

<u>Ex</u>. 6:

<u>Ex</u>. 7:

<u>Ex</u>. 8:

<u>Ex</u>. 9:

<u>Ex</u>. 10:

<u>Ex</u>. 11:

<u>Ex</u>. 12:

Nuclear Chemistry

WHAT IS NUCLEAR CHEMISTRY!?

• The	e branch of chemistry dealing with
NUCLEU	JS
• Loc	cated at the
	o Contains both
• Ove	erall charge
	Oue to the presence of
•	packed
	o Most of an atom
NUCLEC	DNS
• Par	rts of the
5 . /	
Ref	ers to both the

NUCLIDE

MASS DEFECT

•

• Ex. Carbon-12

o ______ protons, _____ electrons, _____ neutrons

12.0107 amu

6 protons:
$$(6 \times 1.007276 \text{ amu}) = 6.043656 \text{ amu}$$

6 electrons: $(6 \times 0.0005486 \text{ amu}) = 0.0032916 \text{ amu}$
6 neutrons: $(6 \times 1.008665 \text{ amu}) = 6.0519 \text{ amu}$
12.0989 amu

- Lost mass is converted into
 - o Released energy is called

NUCLEAR STABILITY

•	Determined by the ratio of	
•	Isotope is when:	
	 1 proton: 1 neutron ratio (small atoms - up to Ca) 	
	o 1 proton : 1.5 neutron ratio (large atoms – Ca to Pb)	
•	Isotope is when:	
	o Ratios not equivalent to the ones above	
	(atoms above)	
•	Protons repel each other in the nucleus due to	Electrostatic force
•	Protons close to one another attract each other due to	P P P P P P P P P P P P P P P P P P P

force

RADIOACTIVITY

•	Process by which nuclei	
	o Named by	Above: Marie with her daughters, Eve, 4, and Irène,
•	Occurs in isotopes	11, in 1908. At right, in 1902 with husband. Pierre. a scientist http://www.techcn.com.cn/uploads/200911/1258289166xFPbLiHLipg
	with	·
	o Referred to as	
•	Must change the make-up of the nuclide b	y undergoing
NUC	LEAR DECAY	·
•	The spontaneous disintegration of a nucle	eus into
	; accompanied by	
		-
	 Process of a radioactive nuclide bre 	aking down to become
•	Results in the release of	

NUCLEAR RADIATION

- Particles and/or electromagnetic radiation (energy) ______

 (radioactive) during nuclear decay (_______)
- Types:
 - 0 _____
 - 0 _____
 - 0 _____
 - 0 _____

_____PARTICLES

- _____nucleus
- Charge: _____
 - o (____)
- Mass: _____ amu (largest)
- Example:

$$^{238}_{92}U \longrightarrow ^{234}_{90}Th + ^{4}_{2}\alpha$$

_____PARTICLES

- •
- Charge: _____
 - o (____)
- Mass: almost ______
- Example:

$${}^{14}_{6}C \longrightarrow {}^{14}_{7}N + {}^{0}_{-1}\beta$$

_____RAYS

- o All _____
 - ONLY _____
- Charge: _____

• Mass: _____

EMISSION

• _____

• Charge: _____

- Mass: almost ______
- Example:

$$^{15}_{8}O \longrightarrow ^{15}_{7}N + ^{0}_{1}\beta$$

HALF LIFE

- _____ for half of a radioactive material to decay
 - o Break down and give off radiation making it _____
- Remember, if only _____ decays, the other _____ is STILL ____

# of half-lives	Fraction Remaining

HALF LIFE EQUATION:

HALF LIFE: EXAMPLES

•	The half life of thorium-227 is days. How many days are required for
	of a given amount to decay?
•	The half life of protactinium-234 is hours. What fraction of a given
	amount remains after hours?

• The half-life of polonium-210 is days. How man		many milligra	y milligrams of		
	polonium-210 remain af	ter	days if you start	with	_mg of the
	isotope?				
•	The half-life of cobalt-60	is	minutes. How n	nany milligra	nms of cobalt-60
	remain after	_ minutes if you	ı start with	mg?	

NUCLEAR REACTIONS

• Equation that represents the _____

____.

- Must obey both the law of _____ and the law of _____.
 - o Must be ______ for the _____ of the
- Ex. 1: ${}^{187}_{75}Re + {}^{A}_{Z}X \rightarrow {}^{188}_{75}Re + {}^{1}_{1}H$

• Ex. 2:
$${}_{4}^{9}Be + {}_{2}^{4}\alpha \rightarrow {}_{Z}^{A}X + {}_{0}^{1}n$$

• Ex. 3: $^{22}_{11}$ Na+ $^{A}_{Z}$ X \rightarrow $^{22}_{10}$ Ne

• Ex. 4:
$$^{238}_{92}U \rightarrow ^{A}_{Z}X + ^{234}_{90}Th$$

• Ex. 5:
$$^{37}_{18}$$
Ar + $^{A}_{Z}$ X \rightarrow $^{37}_{17}$ Cl

• Ex. 6:
$$^{253}_{99}Es + ^{4}_{2}\alpha \rightarrow ^{A}_{Z}X + ^{1}_{0}n$$

•
$$\underline{\text{Ex.}}$$
 7: ${}^{38}_{19}\text{K} \rightarrow {}^{A}_{Z}X + {}^{38}_{18}\text{Ar}$

• Ex. 8: The parent nuclide of the thorium decay series is $^{232}_{90}$ Th. The first four decays are as follows: alpha emission, beta emission, beta emission, and alpha emission. Write the nuclear equations for this series of emissions.

FISSION

Breaking apart of	into
releasing large amounts o	of
o Uses a and more	are generated which
react with other fissionable atoms which produce m	ore
which react with more fissionable atoms.	
• Creates a	
Fission can be controlled so that	
 Occurs in 	
o A is used to control the	

CHERNOBYL

- Located in _______
- April 26, 1986
- The reactor temperature reached _____°F

 $http://inapcache.boston.com/universal/site_graphics/blogs/bigpicture/chernobyl_25th_anniversary/bp2.jp2.pdf$

• days to control the blaze	
0	dropped on fire
Occurred when operators were	<u>.</u>
Reactor is now encased in	
THREE MILE ISLAND	
• Located in	
 March 28, 1979 Power plant in operation for just 	COOLING SYSTEM LEAK No.2 REACTOR
	http://pdxretro.com/2011/03/accident-at-three-mile-island-was-on-this-date-in-1979/
• problem, led to	an
overheating (°F) and	
•% of the reactor core was m	ielted down
Three Mile Island crisis lasted	days

FUSION

Combining of	releasing
large amounts of	
o Generates energy than	
• Occurs at very	
• Occurs in (including the).	
UNITS •	
O Unit that measures nuclear radiation exposure to	
O Unit that measures nuclear radiation exposure to	
USES OF RADIOISOTOPESof fossils	
 Nuclear power plants producing 	

•		
•		of meat
•		
	0	treatment
	0	(used to diagnose medical conditions)

Atoms: The Building Blocks of Matter (Chapter 3)

- ✓ History of the Atom
- ✓ Atomic Theory (Dalton's / Modern)
- ✓ Law of Conservation of Mass / Law of Definite Proportions / Law of Multiple Proportions
- ✓ Atomic Structure: protons / neutrons / electrons (what / where in atom / who found)
- ✓ Mass Number / Atomic Number / Isotopes
- ✓ Periodic table (atomic number / mass number / average atomic mass)
- ✓ Mole / Avogadro's constant
- ✓ Formula mass / Molar mass of elements
- ✓ Mass (grams) to amount (moles) and # of particles (atoms) conversions

• Nuclear Chemistry (Chapter 22)

- ✓ Focus on nucleus / nucleon / nuclide
- ✓ Nuclear stability / radioactivity
- ✓ Nuclear decay / nuclear radiation & types / half-life / units / uses
- ✓ Nuclear reactions (set up & balance)
- ✓ Fission / Fusion