### 1.4 Functions

A function is a set of ordered pairs in which each input has exactly one output (there is no x value that occurs MORE THAN ONCE.)

## Characteristics of a function from set A to set B:

1. Each element in $A$ must be matched with an element in $B$
2. Some elements in B may not be matched with any element in A
3. Two or more elements in A may be matched with the same element in B
4. An element in A (the domain) cannot be matched with two different elements in B

## Testing for Functions

Determine whether the relation represents $y$ as a function of $x$
a.) The input value $x$ is the number
, and the output value $y$ is the
b.)

c.)


## Function Notation

When an equation is used to represent a function, it is convenient to name the function so that it can be referred to easily. Input Output Equation $f(x)$ and $y$ are the same thing!

$$
x \quad f(x) \quad f(x)=x^{2}-3
$$

How to evaluate a function $\rightarrow$ example: $f(x)=3-2 x \quad$ for $x=-1 \quad \boldsymbol{f}(-\mathbf{1})=3-2(-1)=3+2=5$
Examples: Let $g(x)=-x^{2}+4 x+1$. Find each function value.
a.)
b.)
c.)

Example: d.) Evaluate the piece-wise function when $x=-1,0$ and 1 .

## Domain and Range

The domain of a function, or relation, are the x values. They are all of the values for which a function is defined.
On a graph, to determine the domain, you are going to ask yourself if and where there is a point where the graph stops and does not go any farther to the left, and/or stops and does not go any father to the right.

The range of a function, or relation, are the $y$ values.
On a graph, to determine the range, you are going to ask yourself if and where there is a point where the graph stops and does not go any farther up, and/or stops and does not go any father down.

Examples: Find the domain of each function.
d.)
e.)
f.)

Examples - Determine the domain and range of each.
g.)

h.)

i.)

j.)

k.)

1.)


