Solving Proportions Practice Problems

1.)
$$\frac{x}{30} = \frac{3}{5}$$

2.)
$$\frac{5}{6} = \frac{x}{3}$$

3.)
$$\frac{2}{a+6} = \frac{4}{a-4}$$

4.)
$$\frac{6}{x-6} = \frac{2}{x}$$

5.)
$$\frac{k+3}{3} = \frac{k}{5}$$

6.)
$$\frac{6}{2} = \frac{m-5}{m-2}$$

7.)
$$\frac{3}{m-6} = \frac{6}{m}$$

8.)
$$\frac{k}{k-4} = \frac{5}{3}$$

9.)
$$\frac{6}{4} = \frac{x}{x+4}$$

10.)
$$\frac{n+3}{3} = \frac{n}{6}$$

Solving Proportions Practice Problems Answers

- 1.) 18
- 2.) $\frac{5}{2}$
- 3.) -16
- 4.) -3
- 5.) $-\frac{15}{2}$
- 6.) ½
- 7.) 12
- 8.) 10
- 9.) -12
- 10.) -6

Solving Equations Practice Problems

1.)
$$74 = 2(2 + 6x) + 2x$$

2.)
$$-4k - 5(2k + 1) = 27 - 6k$$

3.)
$$-3n + 30 = 3(3n + 2)$$

4.)
$$-4n - 2(6 + 2n) = -2 + 6n$$

5.)
$$-5x - 3 = -3 - x$$

6.)
$$1 + r = 3r - 11$$

7.)
$$-\frac{4}{3}x + 2x = \frac{4}{3}$$

8.)
$$3n - \frac{7}{2}n = -\frac{1}{2}$$

9.)
$$2n - \frac{5}{2} - n = -\frac{1}{2}$$

10.)
$$-x - 7x = 15 - 3x$$

Solving Equations Practice Problems Answers

- 1.) 5
- 2.) -4
- 3.) 2
- 4.) -5
- 5.) 0
- 6.) 6
- 7.) 2
- 8.) 1
- 9.) 2
- 10.) -3

Write the Equation of a Line Given 2 Points Practice

Write the equation of each line passing through the given points.

1) through: (3, 0) and (1, -4)

2) through: (0, 5) and (4, -1)

3) through: (0, 3) and (-4, 3)

4) through: (0, -1) and (-4, 0)

5) through: (1, -5) and (1, 5)

6) through: (0, 1) and (-4, 1)

7) through: (0, -2) and (4, 5)

8) through: (-4, 5) and (-5, -5)

Write the Equation of a Line Given 2 Points Practice Answers

1) through:
$$(3, 0)$$
 and $(1, -4)$
 $y = 2x - 6$

2) through:
$$(0, 5)$$
 and $(4, -1)$
 $y = -\frac{3}{2}x + 5$

3) through:
$$(0, 3)$$
 and $(-4, 3)$
 $y = 3$

4) through:
$$(0, -1)$$
 and $(-4, 0)$
$$y = -\frac{1}{4}x - 1$$

5) through:
$$(1, -5)$$
 and $(1, 5)$
 $x = 1$

6) through:
$$(0, 1)$$
 and $(-4, 1)$
 $y = 1$

7) through:
$$(0, -2)$$
 and $(4, 5)$
$$y = \frac{7}{4}x - 2$$

8) through:
$$(-4, 5)$$
 and $(-5, -5)$
 $y = 10x + 45$

9) through: (2, 1) and (0, -2)
$$y = \frac{3}{2}x - 2$$

10) through:
$$(-3, 3)$$
 and $(-2, 2)$
 $y = -x$

Write the Equation of a Line Given 1 Point and the Slope Practice

1) through:
$$(5, 1)$$
, slope = $\frac{4}{5}$

2) through:
$$(3, 3)$$
, slope = $\frac{1}{3}$

3) through:
$$(2, 2)$$
, slope = $\frac{5}{2}$

4) through:
$$(3, 4)$$
, slope = $\frac{2}{3}$

5) through:
$$(-5, -2)$$
, slope = $\frac{7}{5}$

6) through:
$$(4, -2)$$
, slope = $-\frac{1}{2}$

7) through:
$$(4, 4)$$
, slope = $\frac{1}{2}$

8) through:
$$(-2, -3)$$
, slope = -1

Write the Equation of a Line Given 1 Point and the Slope Practice Answers

1) through: (5, 1), slope =
$$\frac{4}{5}$$

 $y = \frac{4}{5}x - 3$

2) through: (3, 3), slope =
$$\frac{1}{3}$$

 $y = \frac{1}{3}x + 2$

3) through: (2, 2), slope =
$$\frac{5}{2}$$

 $y = \frac{5}{2}x - 3$

4) through: (3, 4), slope =
$$\frac{2}{3}$$

 $y = \frac{2}{3}x + 2$

5) through:
$$(-5, -2)$$
, slope = $\frac{7}{5}$
 $y = \frac{7}{5}x + 5$

6) through:
$$(4, -2)$$
, slope = $-\frac{1}{2}$
 $y = -\frac{1}{2}x$

7) through: (4, 4), slope =
$$\frac{1}{2}$$

 $y = \frac{1}{2}x + 2$

8) through:
$$(-2, -3)$$
, slope = -1
 $y = -x - 5$

Determining if Lines are Parallel, Perpendicular or Neither Practice

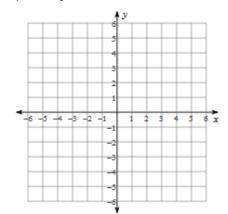
Determine whether each pair of lines are parallel, perpendicular, or neither. Explain you answer.

1)
$$y = \frac{1}{6}x - 4$$
 and $6x - y = 1$

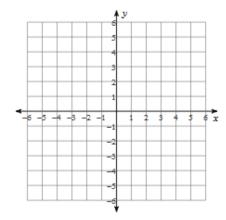
5)
$$y = -\frac{4}{7}x + 11$$
 and $y = \frac{7}{4}x - 3$

2)
$$y = -\frac{5}{2}x - 18$$
 and $5x + 2y = -8$

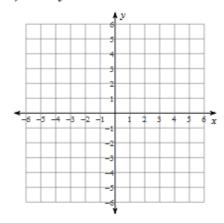
8) y = x + 7 and x + y = -1

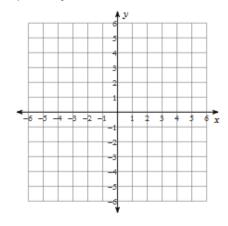

Determining if Lines are Parallel, Perpendicular or Neither Practice Answers

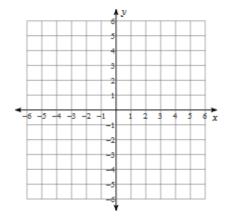
- 1. Neither their slopes are not exactly the same and are not opposite reciprocals
- 2. Parallel their slopes are exactly the same
- 3. Neither their slopes are not exactly the same and are not opposite reciprocals
- 4. Neither their slopes are not exactly the same and are not opposite reciprocals
- 5. Perpendicular their slopes are opposite reciprocals
- 6. Parallel their slopes are exactly the same
- 7. Perpendicular their slopes are opposite reciprocals
- 8. Perpendicular their slopes are opposite reciprocals

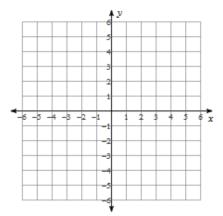

Graphing a Line by Making a Table of Values Practice

Graph each line by creating a chart of x and y values. Find and plot at least 3 points.

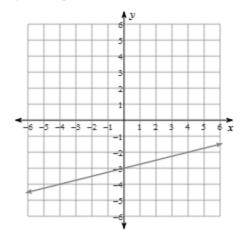

1)
$$x - 4y = 12$$

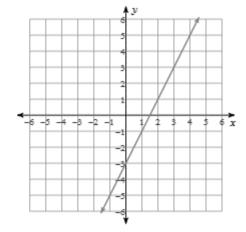

2)
$$2x - y = 3$$


3)
$$3x + y = -4$$

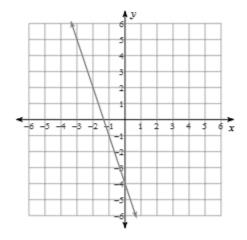

4)
$$x - 4y = 0$$

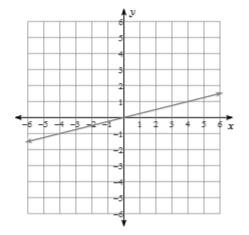
5)
$$x + y = -3$$

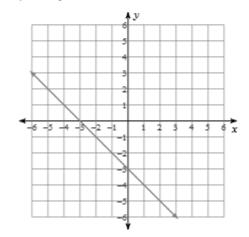

6)
$$x + 2y = 10$$

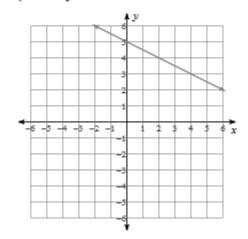

Graphing a Line by Making a Table of Values Practice Answers

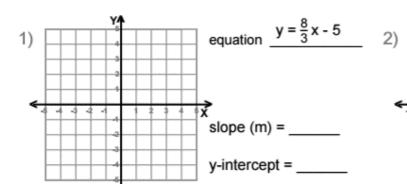
** X values that you choose will vary. Here are what the graphed lines should look like, regardless of the points you chose**


1)
$$x - 4y = 12$$

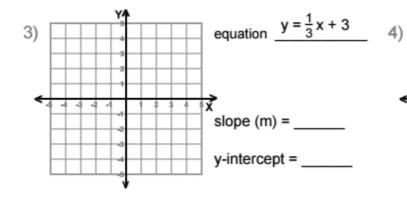

2)
$$2x - y = 3$$

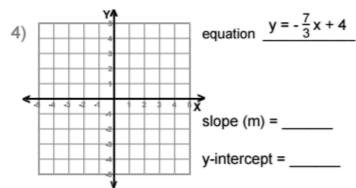

3)
$$3x + y = -4$$

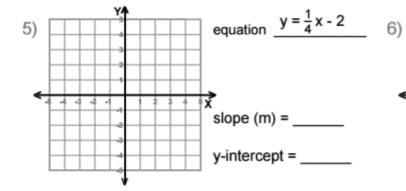

4)
$$x - 4y = 0$$

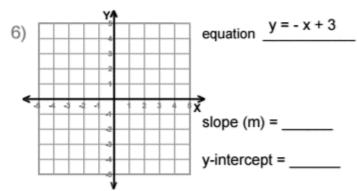

5)
$$x + y = -3$$

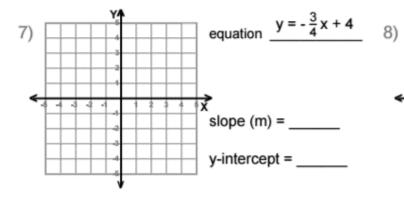


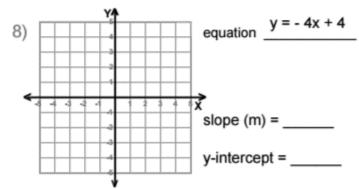

6)
$$x + 2y = 10$$

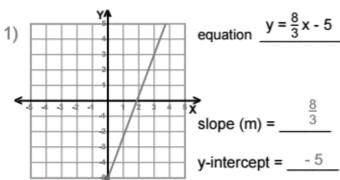


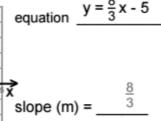

Graphing a Line in Slope Intercept & find m and b Practice

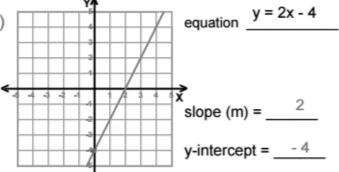


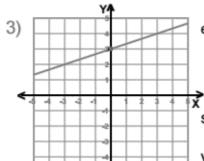




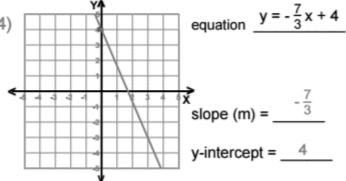


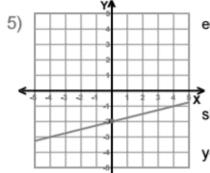


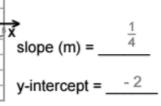


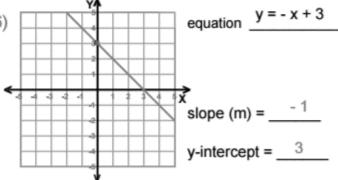

Graphing a Line in Slope Intercept & find m and b Practice Answers

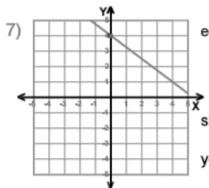
equation $y = \frac{8}{3}x - 5$ 2)

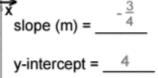


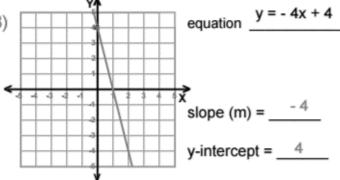



equation $y = \frac{1}{3}x + 3$ 4)

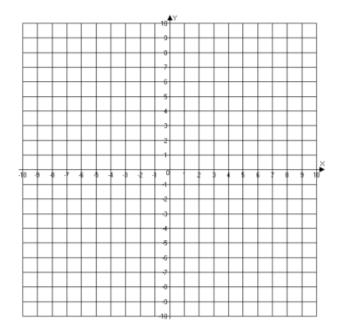

 \vec{x} slope (m) = $\frac{1}{3}$ y-intercept = 3

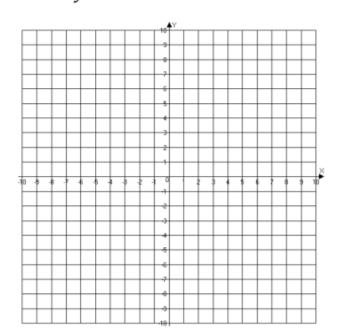



equation $y = \frac{1}{4}x - 2$ 6)

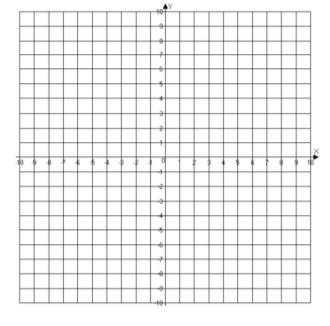


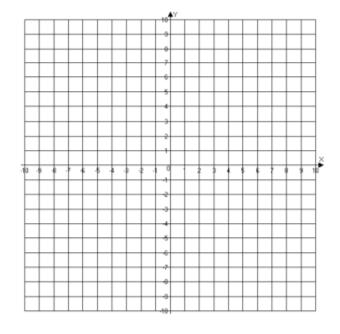
equation $y = -\frac{3}{4}x + 4$ 8)




Finding x and y intercepts and Using them to Graph a Line Practice

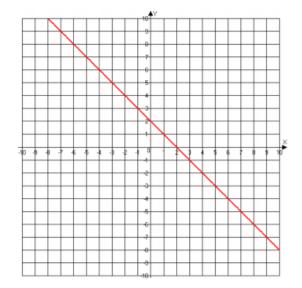
Find the x and y intercepts of each. Use them to graph each line.


$$x + y = 2$$


$$5x - 3y = 15$$

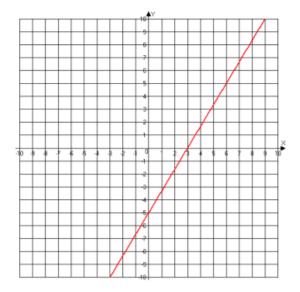
$$4y = 3x + 12$$

$$2x + y = -8$$

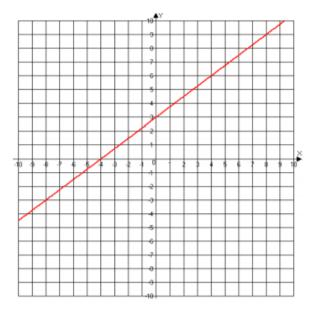


x- and y- intercepts: _____

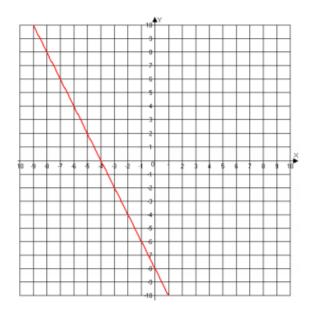
x- and y- intercepts: _____


Finding x and y intercepts and Using them to Graph a Line Practice Answers

$$x + y = 2$$

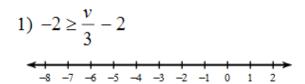

x- and y- intercepts: (2,0) and (0,2)

$$5x - 3y = 15$$

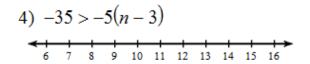


x- and y- intercepts: (3,0) and (0,-5)

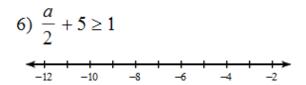
$$4y = 3x + 12$$


$$2x + y = -8$$

x- and y- intercepts: (-4,0) and (0,3) x- and y- intercepts: (-4,0) and (0,-8)


Solving and Graphing Inequalities Practice Problems

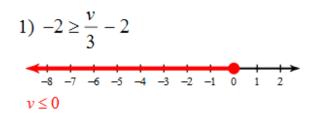
Solve each inequality. State your solution and graph it on a number line.

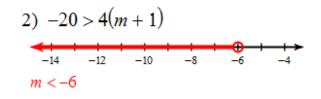


2)
$$-20 > 4(m+1)$$

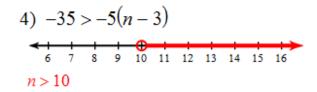
3)
$$-16 \ge -4(x+3)$$

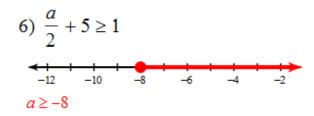
5)
$$-60 \le 5(-4+n)$$

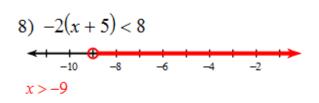

7)
$$-1 + 3x \ge 11$$


8)
$$-2(x+5) < 8$$

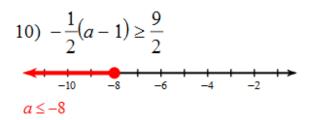
9)
$$-15 < 3 + 3k$$


10)
$$-\frac{1}{2}(a-1) \ge \frac{9}{2}$$

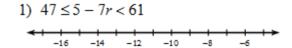

Solving and Graphing Inequalities Practice Problem Answers



3)
$$-16 \ge -4(x+3)$$
 $-4 \quad -3 \quad -2 \quad -1 \quad 0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6$
 $x \ge 1$

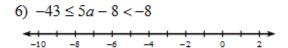


7)
$$-1 + 3x \ge 11$$
 $-4 -3 -2 -1 0 1 2 3 4 5 6$
 $x \ge 4$



9)
$$-15 < 3 + 3k$$
 -12
 -10
 -8
 -6
 -6

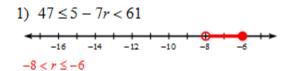
Solving and Graphing Compound Inequalities Practice Problems - "and"

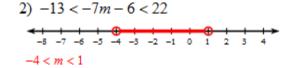

Solve each inequality. State your solution and graph it on a number line.

2)
$$-13 < -7m - 6 < 22$$

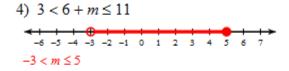
4)
$$3 < 6 + m \le 11$$
 $6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7$

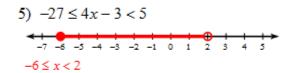
5)
$$-27 \le 4x - 3 < 5$$

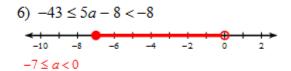


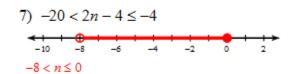

7)
$$-20 < 2n - 4 \le -4$$

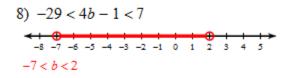
9)
$$-1 < \frac{b}{11} < 0$$

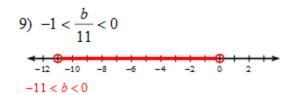

10)
$$-1 < \frac{n}{4} \le 1$$

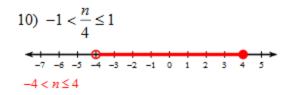

Solving and Graphing Compound Inequalities Practice Answers- "and"





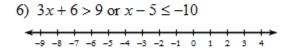

3)
$$-2 < 1 - a \le 7$$
 $-8 - 7 - 6 - 5 - 4 - 3 - 2 - 1 \ 0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6$
 $-6 \le a < 3$



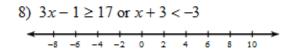


Solving and Graphing Compound Inequalities Practice Problems – "or"

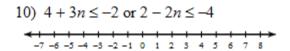
Solve each inequality. State your solution and graph it on a number line.

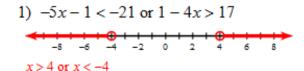

1)
$$-5x-1 < -21$$
 or $1-4x > 17$

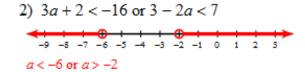
2)
$$3a + 2 < -16$$
 or $3 - 2a < 7$

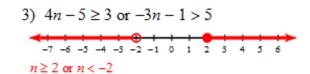

3)
$$4n-5 \ge 3$$
 or $-3n-1>5$

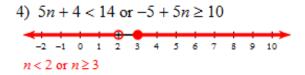
4)
$$5n + 4 < 14$$
 or $-5 + 5n \ge 10$


5)
$$3-4k>19$$
 or $1+2k>-1$

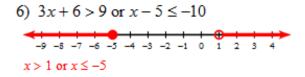

7)
$$-2n-1 \ge 9$$
 or $4-2n \le -6$

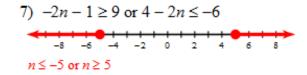


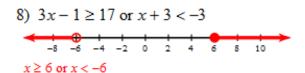

9)
$$3+3p \le 0$$
 or $-3+5p > 2$

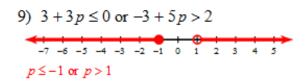


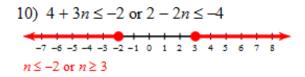
Solving and Graphing Compound Inequalities Practice Problem Answers - "or"










5)
$$3-4k>19$$
 or $1+2k>-1$
 $-9-8-7-6-5-4-3-2-10123$
 $k<-4$ or $k>-1$

Set Theory Practice Problems

Given $U = \{x | x \in \mathbb{Z}, 1 \le x < 12, A = \{1, 2, 4, 6, 8, 10\}$ $B = \{1, 3, 5, 7, 8, 9\}$

- a.) A'
- b.) B'
- c.) A' ∪ B'
- d.) $A' \cap B'$
- e.) (A ∪ B)'
- f.) A ∪ B'
- g.) B ∩ A'

Set Theory Practice Answers

(d) {11}

(f) {3, 5, 7, 9}

⁽a) {3, 5, 7, 9, 11} (b) {2, 4, 6, 10, 11}

Order of Operations Practice Problems

1)
$$5^2 + 6 - 3$$

2)
$$6 - (3 - 6 \div 6)$$

3)
$$(14+1) \div 3 - 3$$

4)
$$(2 \cdot 2) \div 2 + 4$$

5)
$$4+5\cdot 6-(4+2)$$

6)
$$(12-2) \div 2 \cdot (5-3)^2$$

7)
$$2x - 12 \div 2 + 1$$
 if $x = -3$

8)
$$12 \cdot 2 \div 2 - 4x$$
 if $x = 7$

9)
$$-11x - 14 + 9 \div 3$$
 if $x = 2$

10)
$$5x - 2x + 7 - 4$$
 if $x = 0$

Order of Operations Practice Answers

- 1) 28
- 2) 4
- 3) 2
- 4) 6
- 5) 28
- 6) 20
- 7) -11
- 8) -16
- 9) -33
- 10) 3

Evaluating Functions Practice Problems

1)
$$g(x) = 2x + 4$$
; Find $g(4)$

2)
$$f(x) = 4x + 3$$
; Find $f(0)$

3)
$$g(x) = x - 4$$
; Find $g(-9)$

4)
$$f(x) = -3x - 2$$
; Find $f(-2)$

5)
$$f(x) = x - 4$$
; Find $f(8)$

6)
$$g(x) = 4x + 3$$
; Find $g(3)$

7)
$$f(x) = -x - 4$$
; Find $f(-3)$

8)
$$f(x) = 2x - 3$$
; Find $f(x) = 7$

9)
$$g(x) = -x + 3$$
; Find $g(x) = 17$

10)
$$f(x) = -2x + 1$$
; Find $f(x) = 13$

Evaluating Functions Practice Answers

1) 12

5) 4

9) -14

2) 3

6) 15

10) -6

3) -13

7) -1

4) 4

8) 5

Find the Missing Value Within 2 points given the slope practice problems

1)
$$(x, -2)$$
 and $(-5, -4)$; slope: $\frac{2}{9}$

2)
$$(9, y)$$
 and $(-1, -2)$; slope: $\frac{3}{5}$

3)
$$(-7, 2)$$
 and $(x, 6)$; slope: $\frac{2}{7}$

4)
$$(1, -9)$$
 and $(x, -3)$; slope: $-\frac{3}{5}$

5)
$$(-3, 5)$$
 and $(x, -2)$; slope: -7

6)
$$(x, 1)$$
 and $(4, 3)$; slope: $-\frac{1}{2}$

7)
$$(x, 7)$$
 and $(5, -5)$; slope: -4

8)
$$(9, -1)$$
 and $(0, y)$; slope: $\frac{2}{3}$

9)
$$(-7, -6)$$
 and $(x, -1)$; slope: $\frac{5}{4}$

10)
$$(6, -6)$$
 and $(0, y)$; slope: $\frac{1}{6}$

Find the Missing Value Within 2 points given the slope practice answers

1) 4

5) -2

9) -3

2) 4

6) 8

10) -7

3) 7

7) 2

4) -9

8) -7

Write the Equation of a Line Given a Line Perpindicular Practice Problems

1) through:
$$(1, -3)$$
, perp. to $2y = -x - 2$

2) through:
$$(3, -3)$$
, perp. to $y = -\frac{3}{2}x + 4$

3) through:
$$(-3, 5)$$
, perp. to $y = \frac{3}{4}x + 3$

4) through:
$$(1, -5)$$
, perp. to $4y - x = 16$

5) through:
$$(-2, -5)$$
, perp. to $y = -\frac{7}{8}x - 2$

6) through:
$$(-1, 5)$$
, perp. to $y = \frac{1}{6}x + 4$

7) through:
$$(1, 4)$$
, perp. to $y = -\frac{1}{8}x + 3$

8) through:
$$(-1, -3)$$
, perp. to $y = -\frac{1}{2}x + 5$

9) through:
$$(1, 2)$$
, perp. to $y = -\frac{3}{2}x + 5$

10) through:
$$(-2, 0)$$
, perp. to $y = -2x + 3$

Write the Equation of a Line Given a Line Perpindicular Practice Answers

1)
$$y = 2x - 5$$

$$2) \ \ y = \frac{2}{3}x - 5$$

3)
$$y = -\frac{4}{3}x + 1$$

4)
$$y = -4x - 1$$

1)
$$y = 2x - 5$$

2) $y = \frac{2}{3}x - 5$
3) $y = -\frac{4}{3}x + 1$
5) $y = \frac{8}{7}x - \frac{19}{7}$
6) $y = -6x - 1$
7) $y = 8x - 4$

6)
$$y = -6x - 1$$

7)
$$y = 8x - 4$$

8)
$$y = 2x - 1$$

9)
$$y = \frac{2}{3}x + \frac{4}{3}$$

10)
$$y = \frac{1}{2}x + 1$$