Writing and Graphing Exponential Functions

Exponential Function: $y=a b^{x} \quad\left(\mathrm{OR} y=b^{x}\right)$

where $\mathrm{a} \neq 0, b>0$ and $b \neq 1$

Domain:
(left to right)
Range:
(Top to bottom)
Asymptote:

For exponential equations, the "unknown" or the "x" value is the exponent. Example $y=4^{x}$

Compare

Linear Function: $y=3 x+2$

x	-2	-1	0	1	2
y	-4	-1	2	5	8

x	-2	-1	0	1	2
Y	$\frac{2}{9}$	$\frac{2}{3}$	2	6	18

Review of Negative Exponents

Evaluate:
Ex 1) 3^{-2}
Ex 2) 7^{-1}
Ex 3$) 2^{-3}$

Writing the Equation of an Exponential Function

1. Tell whether the function is exponential. Determine what each y value is multiplied by to get the next y value. This is the " b " value
2. Find the value of a by finding the value of y when $x=0$
3. Write the function rule

Write an equation for each function.
Ex 4) Ex

x	-2	-1	0	1	2
y	2	4	8	16	32

5)

x	-2	-1	0	1	2
y	5	25	125	625	3125

Graphing Exponential Functions

Ex 6) Graph $y=2^{x}$ and identify its domain and range.

Ex 7) Graph the functions $y=3 \cdot 2^{x}$ and $y=2^{x}$

An exponential function is increasing when b is greater than 1 . (for $y=a \bullet b^{x}$) Examples of exponential growth functions: $y=5^{x} \quad y=2 \cdot 4^{x} \quad y=2.5 \cdot 3^{x}$
**ALL of the graphs we just graphed THUS FAR are examples of exponential growth functions- this is because they are exponential equations AND because the b value is greater than 1 .

- Notice how the y values are INCREASING from left to right

Compound Interest

Compound Interest:

Ex 9) You put $\$ 250$ in a savings account that earns 4\% annual interest compounded yearly. You do not make any deposits or withdrawals. How much will your investment be worth in 5 years?

Exponential Decay

An exponential function is decreasing when b is between 0 and 1 . (for $y=a \bullet b^{x}$) Examples of exponential decaying functions: $y=\left(\frac{1}{3}\right)^{x} \quad y=1 \bullet \frac{2}{3}^{x} \quad y=2.5 \bullet \frac{1}{4}^{x}$
**The y values (when you construct a chart) are DECREASING from left to right

Ex 10) Graph $y=\left(\frac{1}{2}\right)^{x}$ and identify its domain and range.

Ex 7) Graph the functions $y=3 \cdot\left(\frac{1}{2}\right)^{x}$ and $y=-\frac{1}{3} \cdot\left(\frac{1}{2}\right)^{x}$

