3.2 Logarithmic Functions and their Graphs

Definition of a log function with base a: $f(x) = log_a(x)$ \leftarrow read as "log base a of x"

Logarithms are exponents

 $log_2 8 = 3$ because 2 must be raised to the 3rd power to get 8

$$y = log_a x$$
 IS EQUIVALENT TO

Logarithmic form

Exponential form

Example 1) Change the following from logarithmic form to exponential form:

Logarithmic Form	Exponential Form
$log_2 8 = 3$	8 = 2 ³
$log_39 = 2$	-
$log_5 125 = 3$	-

Example 2) Evaluate:

a)
$$f(x) = log_2 x$$
 if $x = 32$ (ask yourself, "2 to what power equals 32? $2^? = 32$

b)
$$f(x) = log_4 x$$
 if $x = 2$

Common Logarithmic Function: log function with a base of 10

- Denoted log_{10} BUT is more commonly seen and written as log
- When you see log with no written base, it is always understood to have a base of 10
- If you plugged "log~2.5" into your calculator, it is evaluating $log_{10}(2.5)$

Properties of log functions:

1.
$$log_a 1 = 0$$
 \leftarrow because $a^0 = 1$ (anything to the power of zero equals 1)
 Ex) $log_3 1 = 0$ because $3^0 = 1$

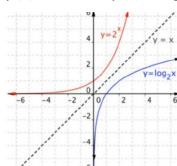
2.
$$log_a a = 1$$
 \leftarrow because $a^1 = a$ (anything to the first power equals itself) Ex) $log_7 7 = 1$ because $7^1 = 7$

3.
$$log_a a^x = x$$
 and $a^{log_a x} = x$ \leftarrow these two are inverses Ex) Simplify $6^{log_6 20} =$

4. If
$$log_a x = log_a y$$
, then $x = y$ \leftarrow both have the same bases ->we can use one-to-one property Ex) $log_3 x = log_3 12$ \Rightarrow $x = 12$ Ex) $log(2x + 1) = log x$ \Rightarrow

Graphs of Log functions:

 $f(x) = a^x$ and $f(x) = log_a x$ ARE INVERSES \rightarrow they are reflections of each other about the line y=x



Graphs in the form $f(x) = a^x$

Domain: (-∞,∞)

Range: (0,∞)

• Y intercept: (0,1)

• Horizontal asymptote at y=0

No vertical asymptote

Graphs in the form $log_a x$ when a > 1

• Domain: (0, ∞)

Range: (-∞,∞)

X intercept: (1,0)

Increasing

· Has an inverse function

Vertical asymptote at y=0

· No horizontal asymptote

Continuous

Reflection of the graph of y = a^x
about x=y

<u>The Natural Logarithmic Function</u>: $\ln x$ \leftarrow "the natural log of x" or "el n of x"

•
$$f(x) = log_e x = ln x$$
 when $x > 0$

•
$$\ln x$$
 is the INVERSE of $e^x \leftarrow e^x$ and $\ln x$ reflect each other about the line y=x

Properties of the natural logarithm:

1.
$$\ln 1 = 0 \leftarrow \text{because } e^0 = 1$$

Ex) Evaluate $\frac{\ln 1}{3}$

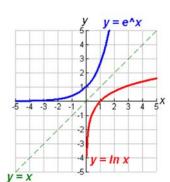
2.
$$\ln e = 1 \leftarrow \text{because}$$

Ex) Evaluate $2 \ln e$

3.
$$\ln e^x = x \leftarrow \text{because}$$

Ex) Evaluate $e^{\ln 5}$

4. If
$$\ln x = \ln y$$
, then $x = y \leftarrow$ they have the same base, so we can use the one-to-one property Ex) Evaluate $\ln(x - 1) = \ln 3$



Transformations of Graphs of Logarithmic Functions

Horizontal Translations

 $\log_a(x-h)$ graph shifts to the right

 $\log_a(x+h)$ graph shifts to the left

Vertical Translations

 $\log_a(x) + k$ graph shifts up

 $\log_a(x) - k$ graph shifts down

Axis flips

 $\log_a(-x)$ graph flips over the *y* axis

 $-\log_a(x)$ graph flips over the *x* axis