Section 2 Logarithmic Functions

Definition of Logarithmic Function with Base a

For x > 0, a > 0, and $a \neq 1$, $y = \log_a x$ if and only if $x = a^y$. The function given by $f(x) = \log_a x$ Read as "log base a of xIs called the **logarithmic function with base** a.

The equation $y = \log_a x$ and $x = a^y$ are equivalent.

Properties of Logarithms

- 1. $\log_a 1 = 0$ because $a^0 = 1$.
- 2. $\log_a a = 1$ because $a^1 = a$.
- 3. $\log_a a^x = x$ and $a^{\log_a x} = x$.Inverse properties4.If $\log_a x = \log_a y$, then x = y.One-to-One Property

To sketch the graph of $y = \log_a x$ you can use the fact that the graphs of inverse functions are reflections of each other in the line y = x.

- Domain: $(0,\infty)$
- Range: $(-\infty,\infty)$
- *x*-intercept: (1,0)
- Increasing
- One-to-one, therefore has an inverse function
- *y*-axis is a vertical asymptote $(\log_a x \to -\infty \quad as \quad x \to 0^+)$
- Continuous

Transformations of Graphs of Logarithmic Functions

Horizontal Translations

 $\log_a(x-h)$ graph shifts to the right

 $\log_a(x+h)$ graph shifts to the left

Vertical Translations $\log_a(x) + k$ graph shifts up $\log_a(x) - k$ graph shifts down

Axis flips

 $\log_a(-x)$ graph flips over the *y* axis $-\log_a(x)$ graph flips over the *x* axis

The Natural Logarithmic Function

The function defined by

 $f(x) = \log_e x = \ln x, \quad x > 0$

is called the natural logarithmic function.

The natural logarithmic function is the inverse of the exponential function. $f(x) = e^x$ has an inverse function of $f(x) = \log_e x = \ln x$

Properties of Natural Logarithms

1. $\ln 1 = 0$ because $e^0 = 1$.2. $\ln e = 1$ because $e^1 = e$.3. $\ln e^x = x$ and $e^{\ln x} = x$.4. If $\ln x = \ln y$, then x = y.0ne-to-One Property