Section 2 Logarithmic Functions

Definition of Logarithmic Function with Base a

For $x>0, a>0$, and $a \neq 1$,

$$
y=\log _{a} x \text { if and only if } x=a^{y} .
$$

The function given by

$$
f(x)=\log _{a} x \quad \text { Read as "log base } a \text { of } x
$$

Is called the logarithmic function with base a.
The equation $y=\log _{a} x$ and $x=a^{y}$ are equivalent.

Properties of Logarithms

1. $\log _{a} 1=0$ because $a^{0}=1$.
2. $\log _{a} a=1$ because $a^{1}=a$.
3. $\log _{a} a^{x}=x$ and $a^{\log _{a} x}=x$. Inverse properties
4. If $\log _{a} x=\log _{a} y$, then $x=y$. One-to-One Property

To sketch the graph of $y=\log _{a} x$ you can use the fact that the graphs of inverse functions are reflections of each other in the line $y=x$.

- Domain: $(0, \infty)$
- Range: $(-\infty, \infty)$
- x-intercept: $(1,0)$
- Increasing
- One-to-one, therefore has an inverse function
- y-axis is a vertical asymptote $\left(\log _{a} x \rightarrow-\infty\right.$ as $\left.x \rightarrow 0^{+}\right)$
- Continuous

Transformations of Graphs of Logarithmic Functions

Horizontal Translations

$\log _{a}(x-h)$ graph shifts to the right
$\log _{a}(x+h)$ graph shifts to the left

Vertical Translations
$\log _{a}(x)+k$ graph shifts up
$\log _{a}(x)-k$ graph shifts down

Axis flips
$\log _{a}(-x)$ graph flips over the yaxis
$-\log _{a}(x)$ graph flips over the x axis

The Natural Logarithmic Function

The function defined by

$$
f(x)=\log _{e} x=\ln x, \quad x>0
$$

is called the natural logarithmic function.
The natural logarithmic function is the inverse of the exponential function.
$f(x)=e^{x}$ has an inverse function of $f(x)=\log _{e} x=\ln x$

Properties of Natural Logarithms

1. $\ln 1=0$ because $e^{0}=1$.
2. $\ln e=1$ because $e^{1}=e$.
3. $\ln e^{x}=x$ and $e^{\ln x}=x$ Inverse Properties
4. If $\ln x=\ln y$, then $x=y$. One-to-One Property
