Unit One: Chapters 1 & 2

Introduction to Chemistry

Quick His	story : forerunner of ch	emistry
• Alche	emists had two goals:	
0	Change metals into	
 Discover the "		
• Was	practiced in the middle ages & Renaissand	http://www.gutenberg.org/files/14218/14218-h/14218-h.htm
Many	<i>/</i>	used in modern science
	Chemistry!?	
dici		
0	What is that material made of?	
0	What is its make-up and internal arrange	ement?
0	How does it behave and change when he materials? Why?	ated, cooled, or mixed with other

Why is Chemistry Important!?

Chemistry links biological and physical sciences together as both living and

nonliving things have a _____

http://msdowlingclass.weebly.com/lesson-plans.html

Where can we see Chemistry!?

http://3.bp.blogspot.com/s7kkZly244M/UPBpNN55dXl/AAAAAAAAAAVM/19q2i

Pure Science vs. Technology

Pure Science	<u>Technology</u>
The study of science alone,	The application
.	
 Knowledge in its major disciplines (chemistry, biology, physics, etc.) 	·

Examples of Technology

- _____
- _____
- •
- _____
- _____
- _____
- _____
- •
- Technology is _______

Chemists do Research

• There are three diff	ferent types of research:		
0	Research		
0	Research		
0	Development		
	Research		
• This type of resear	ch is carried out		
o <u>Ex</u> . How and	why a reaction occurs ar	nd the properties of r	esulting products.
• It is through	research that o	chemists come across	S
o <u>Ex</u> . Teflon			-
	Research	200	
• This type of research	ch is carried out		
<i>3</i> 1			

 $\circ \;\;\underline{\text{Ex}}.$ Destruction of ozone by refrigerant

Development	
This type of research involves the	
http: 	//img2.topfreebiz.com/c2012-9/14/Biodegradable-Disposable-Soup-Spoon-THS-53
o <u>Ex</u> . Computers; biodegradable materials	
ore about the Research!	
All three types of research go hand-in-hand	
○ Ex. Teflon \rightarrow doesn't stick to pans \rightarrow new technology	Image URLs:
Branches of Chemistry	
rganic Chemistry	
Organic chemistry is	
	http://www.industryhype.com/wp/uploads/modelhi20organicN20she

Inorganic Chemistry

Inorganic chemistry is _______

 	 	-
		_

http://www.huntresearchgroup.org.uk/patch/images/step10_CN_final_1a.gif

Physical Chemistry

$$\int xe^{ax}dx = e^{ax}\left(\frac{x}{a} - \frac{1}{a^2}\right)$$

$$\int x^2 e^{ax}dx = e^{ax}\left(\frac{x^2}{a} - \frac{2x}{a^2} + \frac{2}{a^3}\right)$$

$$\int x^3 e^{ax}dx = e^{ax}\left(\frac{x^3}{a} - \frac{3x^2}{a^2} + \frac{6x}{a^3} - \frac{6}{a^4}\right)$$

$$\int \sin^2 x \, dx = \frac{x}{2} - \frac{1}{4}\sin 2x$$

$$\int \cos^2 x \, dx = \frac{x}{2} + \frac{1}{4}\sin 2x$$

 $\cos x = \frac{1}{2} \left(e^{ix} + e^{-ix} \right), \quad \sin x = \frac{1}{2i} \left(e^{ix} - e^{-ix} \right)$

Analytical Chemistry

Analytical chemistry is ________

o In other words, it is the art and science of determining _____

_____·

Theoretical Chemistry

• Theoretical Chemistry is ______

Matter!

Matter

•	Anything that has a	ı an	d
---	---------------------	------	---

Pure Substance

•				

Element

Oxygen 8

http://thumbs.dreamstime.com/x/peri odic-table-basic-elements-6527575.jpg

- Made of ______ the smallest particle that has the properties
 of an element.
 - <u>Ex</u>. Tin (Sn), Oxygen (O)

Compound

•

http://news.upickreviews.com/wpcontent/uploads/2008/04/water.jpg

 \circ Ex. Water (H₂O), Sugar (C₆H₁₂O₆)

content/uploads/2012/05/sugar-cubes.jpg

Mixture •		
Homogeneous Mixture •		
Also called a	which can be defined spread throughout a	
○ <u>Ex</u> . Salt water		
Heterogeneous Mixture	·	http://www.fortybeads.com/blog/wp- content/uploads/2010/12/fossed-salad-e1293108783404 ipp
Colloid		

o Ex. Gelatin, whipped cream, fog, smoke, blood

Suspension

• _____

o Ex. Orange juice with pulp, oil & water

Emulsion

• _____

o <u>Ex</u>. Mayonnaise, lotion

Changes of State

Changes in Matter

Physical Change	<u>Chemical Change</u>	
A change in a substance that	A change in which one or mo	
	substances are	
new substance is made.		
Examples:	A new substance is made with	
0		
0	Also know known as a	
0		
0	• Examples:	
	o	
	o When something	
	it reacts with	
	O	

Properties of Matter

<u>Physical Property</u>	<u>Chemical Property</u>
A characteristic that can be	 Relates to a substance's ability to
observed or measured	undergo
What a substance	What a substance can
<u>Physical Property</u>	
•	_ – independent of the amount of matter
o Examples:	
•	dependent of the amount of matter
 Examples: 	
-	

Chemical Property

-	
•	
React with:	
.	
.	
*	
*	
The P	Periodic Table
are on the	side of the stair step line,
	side of the stair step line, and the

The Periodic Table

Elements of the Periodic Table

• Metals:

0	A good conductor of
0	At room temperature, most metals are
0	Most are
0	Tend to be
• Nonn	netals:
0	A poor conductor of
0	Many are at room temperature (N ₂ , O ₂ , F ₂ , Cl ₂)
0	Br ₂ is a at room temperature
0	C, P, Se, S, I ₂ are at room temperature and tend to be
• Meta	lloids (Semiconductors):
0	Elements along the
0	Has some characteristics of and some characteristics
	of
0	at room temperature
0	Semiconductors of

Parts of an Atom

	Charge	Symbol	Location
Proton			
Neutron			
Electron			

Shorthand Notation

- So how do we figure out the number of neutrons?
 - o # neutrons = _____
 - n⁰ =

• Example: Carbon

o n⁰ = _____

o n⁰ = _____

o n⁰ = _____

o Carbon has ______ p+, _____ e-, and ______ n⁰

Scientific Method

•

•

• _____

• _____

• _____

•

International System of Units (SI)

Prefix	Symbol	Meaning	Example
Mega-	M	1 000 000	megameter(Mm)
Kilo-	k	1000	kilometer(km)
Hecto-	h	100	hectometer (hm)
Deka-	da	10	dekameter (dam)
BASE UNIT	BASE UNIT	1	meter
Deci-	d	0.1	decimeter (dm)
Centi-	С	0.01	centimeter (cm)
Milli-	m	0.001	millimeter (mm)
Micro-	μ	10 ⁻⁶	micrometer (μm)
Nano-	n	10 ⁻⁹	nanometer (nm)
Pico-	p	10 ⁻¹²	picometer (pm)

SI Base Units

Quantity (Item)	Unit	Abbreviation
Length	meter	m
Mass	kilogram	kg
Time	second	S
Temperature	Kelvin	К
Amount of substance	mole	mol
Electric current	ampere	A
Luminous intensity	candela	cd

Mass vs. Weight

	<u>Mass</u>		<u>Weight</u>	
•		 •		

Factor-label Method

G	W
x	C

- G = _____
- W = ____
- C = _____
 - O UNITS MUST BE THE SAME!

- Examples!
 - o <u>Ex</u>. 1:

o <u>Ex</u>. 2:

o <u>Ex</u>. 3:

o Ex. 4: Multiple Step Conversions

$$\begin{array}{|c|c|c|c|c|}\hline G & C_B & W \\\hline & C_G & C_B \end{array}$$

o <u>Ex</u>. 5:

o <u>Ex</u>. 6:

Scientific Notation

• In scientific notation, numbers are written in the form:

$M \times 10^n$

- o M = a number greater than or equal to ______
- o n = _____
- <u>Ex</u>. 75 000 km = _____
- <u>Ex</u>. 75 100 km = _____
- <u>Ex</u>. 0.00075 mm = _____

- Taking numbers out of scientific notation:
 - o The number in the exponent tells you ______

- o The sign (+ or -) tells you ______.
- <u>Ex</u>. 5.218 x 10⁴ kg = _____
- Ex. $1.23 \times 10^2 \text{ cg} =$
- <u>Ex</u>. 3.2510 x 10⁻⁴ nm = _____
- A positive exponent tells you to move the decimal point to the **right**! It is a big number.

A negative exponent tells you to move the decimal point to the left! It is a small number.

- General Rule:
 - o ______ # (>1) = _____ exponent
 - o ______ # (<1) = _____ exponent

Area, Volume, Density

Area

- Area = _____

• Example:

o Four Step Process:

• _____

•

• ______

• _____

Volume

• Volume = _____

0 _____

• Common conversions:

 \circ _____ mL = ____ cm³

 \circ _____ L = ____ dm³ = ____ cm³ = ____ mL

Density	
•	
• Density =	
• D =	
• SI units of density:	
\circ kg/m ³	
o g/cm ³	
o g/mL	
Density is an	property

• Example:

• <u>Example</u> :
Accuracy & Precision
• Accuracy
 How close a value or measurement is to the
• Precision
How close measurements are
• Does this show accuracy or precision?

• Does this show accuracy or precision?

0 _____

• Does this show accuracy or precision?

0

Accuracy can be expressed by calculating the _______.

o % _____=

0	Example: The literature value of the atomic mass of an isotope of nickel is
	If a laboratory experiment determined the mass to be
	, what is the percent error?

Precision can be expressed by calculating the _______.

0	Example: If Student A measures the temperature to	be and
	Student B measures the temperature to be	, what is their
	percent difference?	
Direct &	Indirect/Inverse Proportions (or Relations	hips)
• Direc	et Proportions	
0	If one by the o	ther gives a constant value
0	General equation:	
	•	
0	All directly proportional relationships produce	graphs
	that pass through the origin.	
0	As one variable the other	by the
	amount, and vice versa when	·

• Indirect/Inverse Proportions

o If _____ one by the other gives a constant value.

o General equation:

- - As one variable ______ the other_____ by the _____ amount, and vice versa.

Indirect/Inverse

Exam Date:	

• Matter & Change (Chapter 1)

- ✓ Technology / pure science
- ✓ Matter classifications / physical & chemical changes / physical & chemical properties
- ✓ States of Matter
- ✓ Branches of Chemistry

• Measurements & Calculations (Chapter 2)

- ✓ SI / metric system / prefixes / 7 base units
- ✓ Unit conversions
- ✓ Scientific notation
- ✓ Significant figures
- ✓ Accuracy (percent error) / precision (percent difference)
- Element Names and Symbols