<u>Unit Six</u>: Chapter 7 ~ Chemical Formulas & Chemical Compounds

Significance of a Chemical Formula

Indicates the relative		of atoms	s of each
in a chemical compound	d.		
A chemical formula rep	resents:		
• One	(_		compound)
- One		(compound)
	surrour	d polyatomic	ions to identify them as un
When there is			om's symbol its understoo
lation Numbers			
	or	1	number assigned to an
element to show its		to combi	ne in a compound.
Indicates			
when	with anot	hor atom	

• Group Numbers correlate to oxidation numbers with the exception of the

_____ and group _____:

Rules for Writing Chemical Formulas

1. The _____ of all of the oxidation #s for the atoms and polyatomic ions

_____ be _____.

- 2. On the _____ (written first):
 - The element (polyatomic ion) with ______ oxidation #
- 3. On the _____ (written second):
 - The element (polyatomic ion) with ______ oxidation #

Ionic Compounds

•		and
•		– Uses oxidation numbers
•		the chemical formula:
		1. Write the for each element/polyatomic ion.
		2. Assign the to each element/polyatomic ion (as a
).
		3the # value only (not the charge) to the other element
		(now subscript).
		Put polyatomic ions in if the value is
		<u> </u>
		4subscripts to lowest ratio (do not write values that are
		ones).
•	Ex. 1	;:

3

• <u>Ex. 2</u>:

• <u>Ex. 3</u>:

• <u>Ex. 4</u>:

• <u>Ex. 5</u>:

Ionic Compounds

•		Compounds:
п	1. Write the	of the element/polyatomic ion with the
		, if possible.
	•	can have
		oxidation numbers.
	2. Write the	of the polyatomic ion with the
		the name of the element with
		as root with
• <u>Ex. 1</u> :		
• <u>Ex. 2</u> :		
• <u>Ex. 3</u> :		

•	<u>Ex. 5</u> :
Writ	ting and Naming Covalent Compounds
•	
•	Do criss-cross
•	Use system to identify the of atoms of each
	in the molecule.
•	The gets a prefix
	 Unless it only has (omit the mono-)
•	The gets a prefix and ansuffix
•	The "" and "" endings of the prefixes are when they are
	attached to ""

• <u>Ex. 4</u>:

Prefixes

□ 1 **→**_____

□ 6 **→**_____

□ 2 → _____

□ 7 → _____

□ 3 **→** _____

□ 8 → _____

4 → _____

□ 9 **→** _____

□ 5 → _____

□ 10 **→** _____

• Writing Examples:

• <u>Ex. 1</u>:

□ <u>Ex. 2</u>:

□ <u>Ex. 3</u>:

□ <u>Ex. 4</u>:

• <u>Ex. !</u>	<u>5</u> :
• Naming E	Examples:
• <u>Ex.</u> ?	<u>1</u> :
• <u>Ex. 2</u>	<u>2</u> :
□ <u>Ex.</u> :	3:
□ <u>Ex.</u> 4	<u>4</u> :
• <u>Ex. !</u>	<u>5</u> :
ytra Dractic	o Naming and Writing Compounds (link on HW wobsito):

Extra Practice Naming and Writing Compounds (link on HW website):

- o Dr. Alan's Chemistry Site: http://chemistry.alanearhart.org/Quizzes/Nomenclature/
 - He offers quizzes with TONS of practice problems. In the drop down section, select from Binary Molecular Compounds, Binary Ionic Compounds, and/or Polyatomic Ionic Compounds!

Practice Problems - Textbook Page 215

- 2. Name and write formulas for the compounds formed between the following:
 - a. aluminum and bromine

b. sodium and oxygen

c. magnesium and iodine

d. Pb^{2+} and O^{2-}

e. Sn²⁺ and I¹—

f. Fe^{3+} and S^{2-}

g.	Cu ²⁺ and NO ₃ ¹⁻
h.	NH ₄ ¹⁺ and SO ₄ ²⁻
	e the following compounds using the Stock System: NaI
b.	MgS
C.	CaO
d.	K_2S
e.	CuBr
f	FeCl ₂

•	4. Write	formulas for each of the following compounds (criss-cross where
	necessai	ry):
	a.	barium sulfide
	b.	sodium hydroxide
	C.	lead (II) nitrate
	d.	potassium permanganate
	e.	iron (II) sulfate
	f.	diphosphorus trioxide
	g.	disulfur dichloride
	h.	carbon diselenide

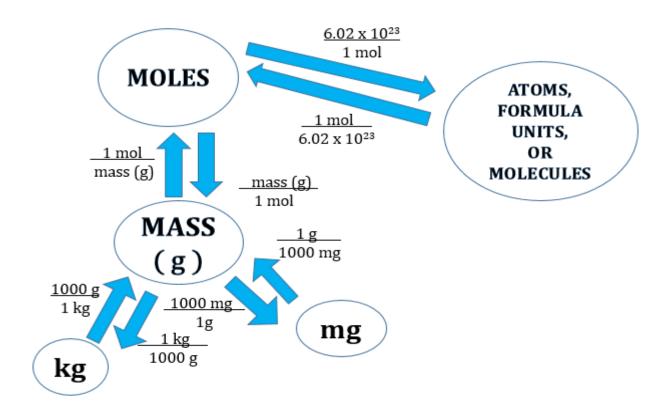
Formula and Molar Mass

•	The of any molecule, formula unit, or ion is the
	of the average atomic masses of all the atoms represented in its formula
•	The is the mass of of a
	chemical compound.
	 Numerically to the formula mass.
	Measured in
•	Determining moles from subscripts:
	□ <u>Ex 1</u> :
	- <u>Ex.2</u> :
•	Formula & Molar Mass Problems:
	• <u>Ex.1</u> :

□ **Ex**. 2:

□ **Ex**. 3:

□ <u>**Ex**</u>. 4:


Extra Practice Calculating Formula & Molar Mass (link on HW website):

- o Dr. Alan's Chemistry Site: http://chemistry.alanearhart.org/Quizzes/Stoichiometry/
 - He offers quizzes with TONS of practice problems. In the drop down section, Calculating Molar Mass. Check the box to limit molar masses to one decimal place – but remember, in class we carry it out to two decimal places.

Review

• One mole of any substance contains ______ representative particles.

Mole roadmap!

Mole/Mass/#Particle Conversions for Compounds

• <u>Ex. 1</u>:

• <u>Ex. 2</u>:

• <u>Ex. 3</u>:

• <u>Ex. 4</u>:

• <u>Ex. 5</u>:

•	Ex.	6

Extra Practice Mole/Mass/#Particle Conversions for Compounds (link on HW website):

- o Dr. Alan's Chemistry Site: http://chemistry.alanearhart.org/Quizzes/Stoichiometry/
 - He offers quizzes with TONS of practice problems. In the drop down section, Converting Between
 Mass and Moles. Check the box to limit molar masses to one decimal place but remember, in class
 we carry it out to two decimal places. He doesn't offer any practice problems with # particles
 (using Avogadro's Number).
- o Textbook Pages 926 927 Look for the problems with compounds and not just elements.

Percentage Composition

•	The percentage by	of each element in a compound is known as the
		of that compound.

• % composition =

•	The percent composition of an element in a compound is the
	regardless of the sample's size.

• <u>Ex. 1</u>:

• <u>Ex. 2</u>:

• <u>Ex. 3</u>:

• <u>Ex. 4</u>:

	. 0		
Extra Practice Calculating PeTextbook - Page 928.	rcent Co	mposition:	
Salt			
•compound			
o Made up of a	() and a	(
Usually forms from		reaction betwe	een an acid & a base.
• Examples:			
 Potassium bromide 			
•			

• <u>Ex. 5</u>:

	o Magnesium o	chloride		
	•			
	o Copper (II) s	ulfate		
	•			
Acid				
• .		compound		
	o Made of			
• .		in water releasing	(including)
•]	Examples:			
	0			
	0			
	0			
	0			
	0			

Empirical Formulas

•	Chemical formula with the ratio of atoms
•	<u>For compounds</u> – the empirical formula is the way the formula is
	written for the actual compound
	 What you already do reduce in criss-cross.
•	<u>For compounds</u> – the empirical formula may not be the
	way the formula is written for the actual compound
Mol	ecular Formulas
•	chemical formula for the compound
•	Shows the way the chemical compound is from the
•	be the same as the empirical formula
	o – will be the same
	o – some will be the same and some won't

• Examples:

Molecular Formula

- o NaCl
- \circ Ca₃(PO₄)₂
- \circ H₂O
- $\circ \ N_2O_4$
- \circ C₆H₁₂O₆
- \circ CO₂
- o C₃H₆
- \circ C₂H₄

Empirical Formula

- o NaCl
- \circ Ca₃(PO₄)₂
- \circ H₂O
- \circ NO₂
- \circ CH₂O
- \circ CO₂
- o CH₂
- \circ CH₂

Exam Date:

• Chemical Formulas & Chemical Compounds (Chapter 7)

- ✓ Write ionic compound formulas & names Stock system
- ✓ Oxidation numbers for monatomic & polyatomic ions (used in ionic compounds)
- ✓ Write covalent compound formulas & names Prefix system
- ✓ Formula mass / Molar mass for compounds
- ✓ Mass (g/kg/mg) to amount (moles) to # of particles (molecules/formula units) conversions
- ✓ Percent (%) composition
- ✓ Acids & Salts
- ✓ Empirical & Molecular formulas