\qquad
\qquad

5-1 Study Guide and Intervention

Solving Inequalities by Addition and Subtraction

Solve Inequalities by Addition Addition can be used to solve inequalities. If any number is added to each side of a true inequality, the resulting inequality is also true.

Addition Property of Inequalities

For all numbers a, b, and c, if $a>b$, then $a+c>b+c$, and if $a<b$, then $a+c<b+c$.

The property is also true when $>$ and $<$ are replaced with \geq and \leq.

Example 1 Solve $x-8 \leq-6$.

Then graph the solution.

$$
\begin{aligned}
x-8 \leq-6 & & \text { Original inequality } \\
x-8+8 \leq-6+8 & & \text { Add } 8 \text { to each side. } \\
x \leq 2 & & \text { Simplify. }
\end{aligned}
$$

The solution in set-builder notation is $\{x \mid x \leq 2\}$.
Number line graph:

Example 2 Solve 4-2a>-a. Then graph the solution.

$$
\begin{array}{ccl}
4-2 a>-a & & \text { Original inequality } \\
4-2 a+2 a>-a+2 a & & \text { Add 2a to each side. } \\
4>a & \text { Simplify. } \\
a<4 & & 4>a \text { is the same as } a<4 .
\end{array}
$$

The solution in set-builder notation is $\{a \mid a<4\}$. Number line graph:

Exercises

Solve each inequality. Check your solution, and then graph it on a number line.

1. $t-12 \geq 16$

2. $n-12<6$

3. $6 \leq g-3$

4. $n-8<-13$

5. $-12>-12+y$

6. $-6>m-8$

Solve each inequality. Check your solution.
7. $-3 x \leq 8-4 x$
8. $0.6 n \geq 12-0.4 n$
9. $-8 k-12<-9 k$
10. $-y-10>15-2 y$
11. $z-\frac{1}{3} \leq \frac{4}{3}$
12. $-2 b>-4-3 b$

Define a variable, write an inequality, and solve each problem. Check your solution.
13. A number decreased by 4 is less than 14 .
14. The difference of two numbers is more than 12 , and one of the numbers is 3 .
15. Forty is no greater than the difference of a number and 2 .
\qquad

5-1 Study Guide and Intervention

Solving Inequalities by Addition and Subtraction

Solve Inequalities by Subtraction Subtraction can be used to solve inequalities. If any number is subtracted from each side of a true inequality, the resulting inequality is also true.
Subtraction Property of Inequalities

For all numbers a, b, and c, if $a>b$, then $a-c>b-c$, and if $a<b$, then $a-c<b-c$.

The property is also true when $>$ and $<$ are replaced with \geq and \leq.

Example Solve $3 a+5>4+2 a$. Then graph it on a number line.

$$
\begin{aligned}
3 a+5 & >4+2 a & & \text { Original inequality } \\
3 a+5-2 a & >4+2 a-2 a & & \text { Subtract } 2 a \text { from each side. } \\
a+5 & >4 & & \text { Simplify. } \\
a+5-5 & >4-5 & & \text { Subtract } 5 \text { from each side. } \\
a & >-1 & & \text { Simplify. }
\end{aligned}
$$

The solution is $\{a \mid a>-1\}$.

Number line graph: | | | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | \mid | \mid | \mid | 4 | \mid | \mid | \mid | | \mid |

Exercises

Solve each inequality. Check your solution, and then graph it on a number line.

1. $t+12 \geq 8$
2. $n+12>-12$
3. $16 \leq h+9$

4. $y+4>-2$
5. $3 r+6>4 r$
6. $\frac{3}{2} q-5 \geq \frac{1}{2} q$

Solve each inequality. Check your solution.
7. $4 p \geq 3 p+0.7$
8. $r+\frac{1}{4}>\frac{3}{8}$
9. $9 k+12>8 k$
10. $-1.2>2.4+y$
11. $4 y<5 y+14$
12. $3 n+17<4 n$

Define a variable, write an inequality, and solve each problem. Check your solution.
13. The sum of a number and 8 is less than 12 .
14. The sum of two numbers is at most 6 , and one of the numbers is -2 .
15. The sum of a number and 6 is greater than or equal to -4 .

