Study Guide and Intervention 5-1

Solving Inequalities by Addition and Subtraction

Solve Inequalities by Addition Addition can be used to solve inequalities. If any number is added to each side of a true inequality, the resulting inequality is also true.

Addition Property of Inequalities	For all numbers a, b, and c, if $a > b$, then $a + c > b + c$,
	and if $a < b$, then $a + c < b + c$.

The property is also true when > and < are replaced with \ge and \le .

Exercises

Copyright @ Glencoe/McGraw-Hill, a division of The McGraw-Hill Companies, Inc.

Solve each inequality. Check your solution, and then graph it on a number line.

1. $t - 12 \ge 16$	2. <i>n</i> − 12 < 6	3. $6 \le g - 3$
◄ → 26 27 28 29 30 31 32 33 34	▲ → 12 13 14 15 16 17 18 19 20	
4. $n - 8 < -13$	5. $-12 > -12 + y$	6 -6 > m - 8
		0 0 / 110 0

Solve each inequality. Check your solution.

- **7.** $-3x \le 8 4x$ **8.** $0.6n \ge 12 - 0.4n$ **9.** -8k - 12 < -9k
- **10.** -y 10 > 15 2y **11.** $z \frac{1}{3} \le \frac{4}{3}$ 12, -2b > -4 - 3b

Define a variable, write an inequality, and solve each problem. Check your solution.

13. A number decreased by 4 is less than 14.

14. The difference of two numbers is more than 12, and one of the numbers is 3.

15. Forty is no greater than the difference of a number and 2.

5-1

Study Guide and Intervention (continued)

Solving Inequalities by Addition and Subtraction

Solve Inequalities by Subtraction Subtraction can be used to solve inequalities. If any number is subtracted from each side of a true inequality, the resulting inequality is also true.

For all numbers *a*, *b*, and *c*, if a > b, then a - c > b - c, **Subtraction Property of Inequalities** and if a < b, then a - c < b - c.

The property is also true when > and < are replaced with \ge and \le .

Example Solve 3a + 5 > 4 + 2a. Then graph it on a number line.

3a + 5 > 4 + 2a	Original inequality
3a + 5 - 2a > 4 + 2a - 2a	Subtract 2a from each side.
a + 5 > 4	Simplify.
a + 5 - 5 > 4 - 5	Subtract 5 from each side.
a > -1	Simplify.
$\mathbf{M} = \mathbf{n} \cdot 1 \cdot 1$	

The solution is $\{a | a > -1\}$.

Number line graph: - + + + +-4 -3 -2 -1 0 1 2 3 4

Exercises

Solve each inequality. Check your solution, and then graph it on a number line.

1. $t + 12 \ge 8$ **2.** n + 12 > -12**3.** $16 \le h + 9$ -6 -5 -4 -3 -2 -1 0 1 2 -26 -25 -24 -23 -22 -21 **6.** $\frac{3}{2}q - 5 \ge \frac{1}{2}q$ 4. v + 4 > -2**5.** 3r + 6 > 4r<u>| | | | | | | </u> 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 -8 -7 -6 -5 -4 -3 -2 -1 0 Solve each inequality. Check your solution. 8. $r + \frac{1}{4} > \frac{3}{8}$ **7.** $4p \ge 3p + 0.7$ **9.** 9k + 12 > 8k**10.** $-1.2 > 2.4 + \gamma$ **11.** 4y < 5y + 14**12.** 3n + 17 < 4n

Define a variable, write an inequality, and solve each problem. Check your solution.

13. The sum of a number and 8 is less than 12.

14. The sum of two numbers is at most 6, and one of the numbers is -2.

15. The sum of a number and 6 is greater than or equal to -4.