Study Guide and Intervention 5 - 4

Solving Compound Inequalities

Inequalities Containing and A compound inequality containing and is true only if both inequalities are true. The graph of a compound inequality containing and is the **intersection** of the graphs of the two inequalities. Every solution of the compound inequality must be a solution of both inequalities.

The solution set is $\{x \mid -3 < x < 1\}$.

Exercises

Graph the solution set of each compound inequality.

1. b > -1 and $b \le 3$ **3.** x > -3 and $x \le 4$ **2.** $2 \ge q \ge -5$ **← ┼ ┼ ┼ ┼ ┼** + + + +-4 -3 -2 -1 0 1 2 3 4 -6 -5 -4 -3 -2 -1 0 1 2 -4 -3 -2 -1 0 1 2 3 4 **4.** −2 ≤ *p* < 4 **5.** -3 < d and d < 2**6.** $-1 \le p \le 3$ **→**| | | | | | | ------3 -2 -1 0 1 2 3 4 5 -4 -3 -2 -1 0 1 2 3 4 -4 -3 -2 -1 0 1 2 3 4

Solve each compound inequality. Then graph the solution set.

7.
$$4 < w + 3 \le 5$$
 8. $-3 \le p - 5 < 2$

 -4 -3 -2 -1 0 1 2 3 4
 -4 -3 -2 -1 0 1 2 3 4

 9. $-4 < x + 2 \le -2$
 10. $y - 1 < 2$ and $y + 2 \ge 1$

 -7 -6 -5 -4 -3 -2 -1 0 1
 -4 -3 -2 -1 0 1 2 3 4

 11. $n - 2 > -3$ and $n + 4 < 6$
 12. $d - 3 < 6d + 12 < 2d + 32$

 -4 -3 -2 -1 0 1 2 3 4
 -3 -2 -1 0 1 2 3 4 5

Lesson 5-4

Study Guide and Intervention (continued) 5-4

Solving Compound Inequalities

Inequalities Containing *or* A compound inequality containing *or* is true if one or both of the inequalities are true. The graph of a compound inequality containing or is the **union** of the graphs of the two inequalities. The union can be found by graphing both inequalities on the same number line. A solution of the compound inequality is a solution of either inequality, not necessarily both.

Example Solve $2a + 1 <$	< 11 or $a > 3a + 2$. Then graph the solution set.
2a + 1 < 11	or $a > 3a + 2$
2a + 1 - 1 < 11 - 1	a - 3a > 3a - 3a + 2
2a < 10	-2a > 2
$\frac{2a}{2} < \frac{10}{2}$	$\frac{-2a}{-2} < \frac{2}{-2}$
$a^{2} < 5^{2}$	$a^{-2} < -1^{-2}$
≪+ • + + + + • + • + •	Graph $a < 5$.
-2 -1 0 1 2 3 4 5 6	
-2 + 1 0 1 2 3 4 5 6	Graph $a < -1$.
	Find the union.
-2 -1 0 1 2 3 4 5 6	

The solution set is $\{a \mid a < 5\}$.

Exercises

Graph the solution set of each compound inequality.

1. $b > 2 \text{ or } b \le -3$ -4 -3 -2 -1 0 1 2 3 4	$2.3 \ge q \text{ or } q \le 1$	$3. y \le -4 \text{ or } y > 0$ $-5 - 4 - 3 - 2 - 1 \ 0 \ 1 \ 2 \ 3$
4. $4 \le p \text{ or } p < 8$	5. $-3 < d \text{ or } d < 2$	6. $-2 \le x \text{ or } 3 \le x$
$-2 -1 \ 0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6$	$-4 - 3 - 2 - 1 \ 0 \ 1 \ 2 \ 3 \ 4$	$-4 - 3 - 2 - 1 \ 0 \ 1 \ 2 \ 3 \ 4$

Solve each compound inequality. Then graph the solution set.

7.
$$3 < 3w \text{ or } 3w \ge 9$$
 8. $-3p + 1 \le -11 \text{ or } p < 2$

 -4 - 3 - 2 - 1 0 1 2 3 4
 0 1 2 3 4 5 6 7 8

 9. $2x + 4 \le 6 \text{ or } x \ge 2x - 4$
 10. $2y + 2 < 12 \text{ or } y - 3 \ge 2y$

 -2 - 1 0 1 2 3 4 5 6
 0 1 2 3 4 5 6 7 8

 11. $\frac{1}{2}n > -2 \text{ or } 2n - 2 < 6 + n$
 12. $3a + 2 \ge 5 \text{ or } 7 + 3a < 2a + 6$

 -4 - 3 - 2 - 1 0 1 2 3 4
 -4 - 3 - 2 - 1 0 1 2 3 4