$$f(x) = a^x$$
 and $g(x) = \log_a x$ are inverses.

How to find the inverse of an exponential function:

- 1. Set the function equal to y
- 2. Isolate the part of the function that includes the x on one side of the equals sign
- 3. Swap x and y
- 4. Rewrite the exponential and the rest of the function as a logarithm (take the log of both sidesthis will allow you to get the yout of the exponent)
- 5. Solve for y

Ex) Find the inverse of $k(x) = 7^{x+1} - 3$

1.
$$y = 7^{x+1} - 3$$

2.
$$v + 3 = 7^{x+1}$$

3.
$$x + 3 = 7^{y+1}$$

4.
$$\log_7(x+3) = 7^{\log_7 y+1}$$

5.
$$\log_7(x+3) = y+1$$

6.
$$\log_7(x+3) - 1 = y$$

1. Find the inverse of $m(x) = 14^{x+6} + 3$

2. Graph
$$g(x) = \log(x - 3) + 1$$

3. Graph
$$h(x) = 5^{x-2} + 4$$

- 4. Graph $\ln x + 3$
- 5. Find the domain of the functions:

a)
$$p(x) = \log(x-3) + 1$$
 b) $t(x) = \ln x + 7$ c) $r(x) = e^{x+6} - 2$

b)
$$t(x) = \ln x + 7$$

c)
$$r(x) = e^{x+6} - 2$$

6. Write each in logarithmic form. You do not have to solve.

a)
$$6^{-2} = \frac{1}{36}$$

a)
$$6^{-2} = \frac{1}{36}$$
 b) $e^{-12x} = 7$ c) $4^{-3} = \frac{1}{64}$ d) $e^x = 4$

c)
$$4^{-3} = \frac{1}{64}$$

d)
$$e^x = 4$$

7. Write each in exponential form. You do not have to solve.

a)
$$\log_5 x = -9$$

b)
$$\log 37 = x$$

a)
$$\log_5 x = -9$$
 b) $\log 37 = x$ c) $\log \frac{1}{1000} = -3$ d) $\log_8 4 = \frac{2}{3}$

d)
$$\log_8 4 = \frac{2}{3}$$

8. Expand using all properties that apply.

a)
$$\log_4 \frac{a^7}{b^3}$$
 b) $\log 4x^2y$ c) $\ln \frac{x^4\sqrt{y}}{z^5}$

b)
$$\log 4x^2y$$

c)
$$\ln \frac{x^4 \sqrt{y}}{z^5}$$

d)
$$\log_3 10 z$$

9. Condense to one term.

a)
$$3 \ln(x-2) - (2 \ln y + 7 \ln z)$$

a)
$$3\ln(x-2) - (2\ln y + 7\ln z)$$
 b) $6\log_2 x + \log_2 y - 5\log_2 z$ c) $2\ln 8 + 5\ln(x-4)$

c)
$$2 \ln 8 + 5 \ln(x - 4)$$

10. Solve each for x. Round to 3 decimals when necessary.

a)
$$e^{2x} - 7e^x + 10 = 0$$
 b) $6^x - 28 = -8$

b)
$$6^x - 28 = -8$$

c)
$$\ln 3x = 8.2$$

d)
$$\ln \sqrt{x+1} = 2$$

e)
$$7 + 3 \ln x = 5$$

d)
$$\ln \sqrt{x+1} = 2$$
 e) $7 + 3 \ln x = 5$ f) $6 \log_3(0.5x) = 11$

g)
$$8(4^{6-2x}) + 13 = 41$$
 h) $\log_{2x} 40 = 4$

h)
$$\log_{2x} 40 = 4$$

i)
$$\log_2 x + \log_2(x+2) = \log_2(x+6)$$
 j) $8(10^{3x}) = 12$

i)
$$8(10^{3x}) = 12$$

Growth and decay: $y = ne^{kt}$ where y is the final amount, n is the initial amount, k is a constant, and t is time.

Compound interest: $A = P(1 + \frac{r}{n})^{nt}$ where A is the final amount, P is the initial investment, r is the interest rate, t is time, n is compounding's per year

Continuous Compounding: $A = Pe^{rt}$ where A is the final amount, P is the initial investment, r is the interest rate, and t is time.

- 11. \$1000 is invested at 5% interest, compounded twice a year, for 1 year. What is the balance after 1 year?
- 12. How many years will it take for your money to triple if you deposit it into an account that pays 5% compounded continuously?
- 14. A certain population of bacteria doubles every 7 minutes. Assuming you started with only 1 bacterium, how many bacterium could be present at the end of 84 minutes?