EXAMPLE 6 Using the Rational Power Rule

(a)
$$\frac{d}{dx}(\sqrt{x}) = \frac{d}{dx}(x^{1/2}) = \frac{1}{2}x^{-1/2} = \frac{1}{2\sqrt{x}}$$

Notice that \sqrt{x} is defined at x = 0, but $1/(2\sqrt{x})$ is not.

(b)
$$\frac{d}{dx}(x^{2/3}) = \frac{2}{3}(x^{-1/3}) = \frac{2}{3x^{1/3}}$$

The original function is defined for all real numbers, but the derivative is undefined at x = 0. Recall Figure 3.12, which showed that this function's graph has a *cusp* at x = 0.

(c)
$$\frac{d}{dx}(\cos x)^{-1/5} = -\frac{1}{5}(\cos x)^{-6/5} \cdot \frac{d}{dx}(\cos x)$$

= $-\frac{1}{5}(\cos x)^{-6/5}(-\sin x)$
= $\frac{1}{5}\sin x(\cos x)^{-6/5}$

Now try Exercise 33.

2.
$$y_1 = \frac{2}{3}\sqrt{9 - x^2}$$
, $y_2 = -\frac{2}{3}\sqrt{9 - x^2}$ **5.** $y_1 = \sqrt{2x + 3 - x^2}$, $y_2 = -\sqrt{2x + 3 - x^2}$ **8.** $y' = \frac{xy^2}{x^2 - y + x}$

Quick Review 3.7

In Exercises 1-5, sketch the curve defined by the equation and find two functions y_1 and y_2 whose graphs will combine to give the curve.

1.
$$x - y^2 = 0$$
 $y_1 = \sqrt{x}$, $y_2 = -\sqrt{x}$ **2.** $4x^2 + 9y^2 = 36$

3.
$$x^2 - 4y^2 = 0$$
 $y_1 = \frac{x}{2}$, $y_2 = -\frac{x}{2}$ **4.** 3

1.
$$x - y^2 = 0$$
 $y_1 = \sqrt{x}$, $y_2 = -\sqrt{x}$ **2.** $4x^2 + 9y^2 = 36$
3. $x^2 - 4y^2 = 0$ $y_1 = \frac{x}{2}$, $y_2 = -\frac{x}{2}$ **4.** $x^2 + y^2 = 9$
5. $x^2 + y^2 = 2x + 3$ $y_1 = \sqrt{9 - x^2}$, $y_2 = -\sqrt{9 - x^2}$

In Exercises 6–8, solve for y' in terms of y and x.

6.
$$x^2y' - 2xy = 4x - y$$
 $y' = \frac{4x - y + 2xy}{x^2}$

7.
$$y' \sin x - x \cos x = xy' + y$$
 $y' = \frac{y + x \cos x}{\sin x - x}$

8.
$$x(y^2 - y') = y'(x^2 - y)$$

In Exercises 9 and 10, find an expression for the function using rational powers rather than radicals.

9.
$$\sqrt{x}(x-\sqrt[3]{x})$$
 $x^{3/2}-x^{5/6}$

9.
$$\sqrt{x}(x-\sqrt[3]{x})$$
 $x^{3/2}-x^{5/6}$ **10.** $\frac{x+\sqrt[3]{x^2}}{\sqrt{x^3}}$ $x^{-1/2}+x^{-5/6}$

25. (a)
$$y = 2\pi x - 2\pi$$
 (b) $y = -\frac{x}{2\pi} + \frac{1}{2\pi}$

Section 3.7 Exercises

In Exercises 1–8, find dy/dx.

4.
$$\frac{y}{x} - (x+y)^2$$
 or $\frac{1-3x^2-2xy}{x^2+1}$

1.
$$x^2y + xy^2 = 6$$
 $-\frac{2xy + y^2}{2xy + x^2}$

2.
$$x^3 + y^3 = 18xy$$
 $\frac{6y - x^2}{y^2 - 6x}$

In Exercises 1–8, find
$$dy/dx$$
.
1. $x^2y + xy^2 = 6$ $-\frac{2xy + y^2}{2xy + x^2}$
2. $x^3 + y^3 = 18xy$ $\frac{6y - x^2}{y^2 - 6x}$
3. $y^2 = \frac{x - 1}{x + 1}$ $\frac{1}{y(x + 1)^2}$
4. $x^2 = \frac{x - y}{x + y}$
5. $x = \tan y \cos^2 y$
6. $x = \sin y \sec y$

4.
$$x^2 = \frac{x}{x + y}$$

$$5. x = \tan y \quad \cos^2 y$$

$$6. x = \sin y \quad \sec y$$

5.
$$x = \tan y \cos^2 y$$
 6. $x = \sin y \sec y$ **7.** $x + \tan (xy) = 0$ See page 164. **8.** $x + \sin y = xy \frac{1 - y}{x - \cos y}$

In Exercises 9–12, find dy/dx and find the slope of the curve at the

9.
$$x^2 + y^2 = 13$$
, $(-2, 3) \frac{dx}{dy} \frac{y}{x}$

10.
$$x^2 + y^2 = 9$$
, (0, 3) $\frac{dy}{dx} = -\frac{x}{y}$,

indicated point.
$$\frac{dy}{dx} = -\frac{x}{y}$$
, 2/3
9. $x^2 + y^2 = 13$, (-2, 3) $\frac{dy}{dx} = -\frac{x}{y}$, 0
10. $x^2 + y^2 = 9$, (0, 3) $\frac{dy}{dx} = -\frac{x}{y}$, 0
11. $(x-1)^2 + (y-1)^2 = 13$, (3, 4) $\frac{dy}{dx} = -\frac{x-1}{y-1}$, -2/3

12.
$$(x+2)^2 + (y+3)^2 = 25$$
, $(1, -7)$ See page 164.

In Exercises 13–16, find where the slope of the curve is defined.

13.
$$x^2y - xy^2 = 4$$
 See page 164. 14. $x = \cos y$ See page 164.

14.
$$x = \cos y$$
 See page 164.

15.
$$x^3 + y^3 = xy$$
 See page 164. **16.** $x^2 + 4xy + 4y^2 - 3x = 6$

16.
$$x^2 + 4xy + 4y^2 - 3x = 6$$

In Exercises 17–26, find the lines that are (a) tangent and

(b) normal to the curve at the given point.
17.
$$x^2 + xy - y^2 = 1$$
, (2, 3) **(a)** $y = \frac{7}{4}x - \frac{1}{2}$ **(b)** $y = -\frac{4}{7}x + \frac{29}{7}$

18.
$$x^2 + y^2 = 25$$
, (3, -4) (a) $y = \frac{3}{4}x - \frac{25}{4}$ (b) $y = -\frac{4}{3}x$

19.
$$x^2y^2 = 9$$
, $(-1, 3)$

See page 164.

20.
$$y^2 - 2x - 4y - 1 = 0$$
, $(-2, 1)$ (a) $y = -x - 1$ (b) $y = x + 3$

21.
$$6x^2 + 3xy + 2y^2 + 17y - 6 = 0$$
, $(-1, 0)$ See page 164.

22.
$$x^2 - \sqrt{3}xy + 2y^2 = 5$$
, $(\sqrt{3}, 2)$ (a) $y = 2$ (b) $y = \sqrt{3}$

23.
$$2xy + \pi \sin y = 2\pi$$
, $(1, \pi/2)$ See page 164.

24.
$$x \sin 2y = y \cos 2x$$
, $(\pi/4, \pi/2)$ (a) $y = 2x$ (b) $y = -\frac{1}{2}x + \frac{5\pi}{8}$

25.
$$y = 2 \sin (\pi x - y)$$
, (1, 0)

26.
$$x^2 \cos^2 y - \sin y = 0$$
, $(0, \pi)$ (a) $y = \pi$ (b) $x = 0$

In Exercises 27–30, use implicit differentiation to find dy/dx and then d^2v/dx^2 .

27.
$$x^2 + y^2 = 1$$
 See page 164. **28.** $x^{2/3} + y^{2/3} = 1$ See page 164.

28.
$$x^{2/3} + y^{2/3} = 1$$
 See page 164

29.
$$y^2 = x^2 + 2x$$
 See page 164.

29.
$$y^2 = x^2 + 2x$$
 See page 164. **20.** $x^{2/3} + y^{2/3} = 1$ See page 164. **20.** $y^2 + 2y = 2x + 1$ See page 164.

In Exercises 31–42, find dy/dx.

31.
$$y = x^{9/4}$$
 (9/4) $x^{5/4}$

32.
$$y = x^{-3/5}$$
 $(-3/5)x^{-8/5}$

33.
$$y = \sqrt[3]{x}$$
 $(1/3)x^{-2/3}$

34.
$$v = \sqrt[4]{x}$$
 $(1/4)x^{-3/4}$

35.
$$y = (2x + 5)^{-1/2} - (2x + 5)^{-3/2}$$
 36. $y = (1 - 6x)^{2/3} - 4(1 - 6x)^{-1/3}$

33.
$$y = (2x + 3)$$
 (2x + 3)

30.
$$y = (1 - 6x)^{-73} - 4(1 - 6x)$$

37.
$$y = x\sqrt{x^2 + 1}$$

 $x^2(x^2 + 1)^{-1/2} + (x^2 + 1)^{1/2}$

37.
$$y = x\sqrt{x^2 + 1}$$
 $x^2(x^2 + 1)^{-1/2} + (x^2 + 1)^{1/2}$ **38.** $y = \frac{x}{\sqrt{x^2 + 1}}$ $(x^2 + 1)^{-3/2}$

39.
$$y = \sqrt{1 - \sqrt{x}}$$
 See page 164.

40.
$$y = 3(2x^{-1/2} + 1)^{-1/3}$$

41.
$$y = 3(\csc x)^{3/2}$$
 See page 164.

39.
$$y = \sqrt{1 - \sqrt{x}}$$
 See page 164. **40.** $y = 3(2x^{-1/2} + 1)^{-1/3}$ See page 164. **41.** $y = 3(\csc x)^{3/2}$ See page 164. **42.** $y = [\sin (x + 5)]^{5/4}$ See page 164.

43. Which of the following could be true if $f''(x) = x^{-1/3}$? (b), (c), and (d) **47.** (a) Confirm that (-1, 1) is on the curve defined by

(a)
$$f(x) = \frac{3}{2}x^{2/3} - 3$$

(a)
$$f(x) = \frac{3}{2}x^{2/3} - 3$$
 (b) $f(x) = \frac{9}{10}x^{5/3} - 7$

(c)
$$f'''(x) = -\frac{1}{3}x^{-4/3}$$

(d)
$$f'(x) = \frac{3}{2}x^{2/3} + 6$$

44. Which of the following could be true if $g''(t) = 1/t^{3/4}$? (a) and (c)

(a)
$$g'(t) = 4\sqrt[4]{t} - 4$$

(b)
$$g'''(t) = -4/\sqrt[4]{t}$$

(c)
$$g(t) = t - 7 + (16/5)t^{5/4}$$

(**d**)
$$g'(t) = (1/4)t^{1/4}$$

45. The Eight Curve (a) Find the slopes of the figure-eightshaped curve

$$y^4 = y^2 - x^2$$

at the two points shown on the graph that follows.

(b) Use parametric mode and the two pairs of parametric equations

$$x_1(t) = \sqrt{t^2 - t^4}, \quad y_1(t) = t,$$

 $x_2(t) = -\sqrt{t^2 - t^4}, \quad y_2(t) = t.$

to graph the curve. Specify a window and a parameter interval.

46. The Cissoid of Diocles (dates from about 200 B.c.)

(a) Find equations for the tangent and normal to the cissoid of Diocles,

$$y^2(2-x)=x^3$$
,

at the point (1, 1) as pictured below.

(b) Explain how to reproduce the graph on a grapher.

(a) Tangent:
$$y = 2x -$$

normal: $y = -\frac{1}{2}x + \frac{3}{2}$

(b) One way is to graph the

$$y = \pm \sqrt{\frac{x^3}{2 - x}}.$$

 $x^3y^2 = \cos(\pi y)$. $(-1)^3(1)^2 = \cos(\pi)$ is true since both sides equal: -1. (b) Use part (a) to find the slope of the line tangent to the curve at (-1, 1). The slope is 3/2.

48. Grouping Activity

(a) Show that the relation There are three values: 1, $\frac{-1 \pm \sqrt{5}}{2}$

cannot be a function of x by showing that there is more than one possible y-value when x = 2. f'(2) = 1,

- (b) On a small enough square with center (2, 1), the part f''(2) = -4of the graph of the relation within the square will define a function y = f(x). For this function, find f'(2) and f''(2).
- **49.** Find the two points where the curve $x^2 + xy + y^2 = 7$ crosses the x-axis, and show that the tangents to the curve at these points are parallel. What is the common slope of these tangents?
- **50.** Find points on the curve $x^2 + xy + y^2 = 7$ (a) where the tangent is parallel to the x-axis and (b) where the tangent is parallel to the y-axis. (In the latter case, dy/dx is not defined, but dx/dy is. What value does dx/dy have at these points?)
- **51.** Orthogonal Curves Two curves are orthogonal at a point of intersection if their tangents at that point cross at right angles. Show that the curves $2x^2 + 3y^2 = 5$ and $y^2 = x^3$ are orthogonal at (1, 1) and (1, -1). Use parametric mode to draw the curves and to show the tangent lines.
- **52.** The position of a body moving along a coordinate line at time t is $s = (4 + 6t)^{3/2}$, with s in meters and t in seconds. Find the body's velocity and acceleration when t = 2 sec.
- **53.** The velocity of a falling body is $v = 8\sqrt{s-t} + 1$ feet per second at the instant t(sec) the body has fallen s feet from its starting point. Show that the body's acceleration is 32 ft/sec².
- 54. The Devil's Curve (Gabriel Cramer [the Cramer of Cramer's Rule], 1750) Find the slopes of the devil's curve $y^4 - 4y^2 = x^4 - 9x^2$ at the four indicated points.

- 55. The Folium of Descartes (See Figure 3.47 on page 157)
 - (a) Find the slope of the folium of Descartes, $x^3 + y^3 9xy = 0$ at the points (4, 2) and (2, 4). (a) At (4, 2): $\frac{5}{4}$; at (2, 4): $\frac{4}{5}$
 - (b) At what point other than the origin does the folium have a horizontal tangent? At $(3\sqrt[3]{2}, 3\sqrt[3]{4}) \approx (3.780, 4.762)$
 - (c) Find the coordinates of the point A in Figure 3.47, where the folium has a vertical tangent. At $(3\sqrt[3]{4}, 3\sqrt[3]{2}) \approx (4.762, 3.780)$

- **56.** The line that is normal to the curve $x^2 + 2xy 3y^2 = 0$ at (1, 1) intersects the curve at what other point? (3, -1)
- **57.** Find the normals to the curve xy + 2x y = 0 that are parallel to the line 2x + y = 0. At (-1, -1): y = -2x - 3; at (3, -3): y = -2x + 3
- **58.** Show that if it is possible to draw these three normals from the point (a, 0) to the parabola $x = y^2$ shown here, then a must be greater than 1/2. One of the normals is the x-axis. For what value of a are the other two normals perpendicular?

The normal at the point (b^2, b) is: $y = -2bx + 2b^3 + b.$

This line intersects the x-axis at $x = b^2 + \frac{1}{2}$, which must be greater than $\frac{1}{2}$ if $b \neq 0$. The two normals are perpendicular when a = 3/4.

Standardized Test Questions

You should solve the following problems without using a graphing calculator.

- **59. True or False** The slope of $xy^2 + x = 1$ at (1/2, 1) is 2. Justify your answer. False. It is equal to -2
- **60. True or False** The derivative of $y = \sqrt[3]{x}$ is $\frac{1}{3x^{2/3}}$. Justify your answer. True. By the power rule

In Exercises 61 and 62, use the curve $x^2 - xy + y^2 = 1$.

- **61. Multiple Choice** Which of the following is equal to dy/dx? A
 - $(\mathbf{A}) \, \frac{y 2x}{2y x}$
- (C) $\frac{2x}{x-2y}$
- **(D)** $\frac{2x+y}{x-2y}$
- (E) $\frac{y+2x}{r}$
- **62.** Multiple Choice Which of the following is equal to $\frac{d^2y}{dy^2}$?
 - (A) $-\frac{6}{(2y-x)^3}$
- **(B)** $\frac{10y^2 10x^2 10xy}{(2y x)^3}$
- (C) $\frac{8x^2 4xy + 8y^2}{(x 2y)^3}$ (D) $\frac{10x^2 + 10y^2}{(x 2y)^3}$ (E) $\frac{2}{x}$

- 7. $-\frac{1}{x}\cos^2{(xy)} \frac{y}{x}$ 12. $\frac{dy}{dx} = -\frac{x+2}{y+3}$, 3/4
- 13. $\frac{dy}{dx} = \frac{2xy y^2}{2xy x^2}$, defined at every point except where x = 0 or y = x/2
- $=-\frac{1}{\sin v}$, defined at every point except where $y=k\pi, k$ any integer
- 15. $\frac{dy}{dx} = \frac{3x^2 y}{x 3y^2}$, defined at every point except where $y^2 = x/3$
- **16.** $\frac{dy}{dx} = \frac{3 2x 4y}{4x + 8y}$, defined at every point except where $y = -\frac{1}{2}x$

- **63. Multiple Choice** Which of the following is equal to dy/dx if
 - (A) $\frac{3x^{1/3}}{4}$ (B) $\frac{4x^{1/4}}{3}$ (C) $\frac{3x^{1/4}}{4}$ (D) $\frac{4}{3x^{1/4}}$ (E) $\frac{3}{4x^{1/4}}$
- **64. Multiple Choice** Which of the following is equal to the slope of the tangent to $y^2 - x^2 = 1$ at $(1, \sqrt{2})$?
 - (A) $-\frac{1}{\sqrt{2}}$ (B) $-\sqrt{2}$ (C) $\frac{1}{\sqrt{2}}$ (D) $\sqrt{2}$ (E) 0

Extending the Ideas

- 65. Finding Tangents
 - (a) Show that the tangent to the ellipse

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

at the point (x_1, y_1) has equation

$$\frac{x_1x}{a^2} + \frac{y_1y}{b^2} = 1.$$

(b) Find an equation for the tangent to the hyperbola

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$

at the point (x_1, y_1) .

66. End Behavior Model Consider the hyperbola

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1.$$

Show that

- (a) $y = \pm \frac{b}{a} \sqrt{x^2 a^2}$.
- **(b)** g(x) = (b/a)|x| is an end behavior model for

$$f(x) = (b/a)\sqrt{x^2 - a^2}$$

(c) g(x) = -(b/a)|x| is an end behavior model for

$$f(x) = -(b/a)\sqrt{x^2 - a^2}$$
.

19. (a)
$$y = 3x + 6$$
 (b) $y = -\frac{1}{3}x + \frac{8}{3}$

- **21.** (a) $y = \frac{6}{7}x + \frac{6}{7}$ **23.** (a) $y = -\frac{\pi}{2}x + \pi$

 - **(b)** $y = -\frac{7}{6}x \frac{7}{6}$ **(b)** $y = \frac{2}{\pi}x \frac{2}{\pi} + \frac{\pi}{2}$
- 27. $\frac{dy}{dx} = -\frac{x}{y}$ $\frac{d^2y}{dx^2} = -\frac{(x^2 + y^2)}{y^3} = -\frac{1}{y^3}$ 29. $\frac{dy}{dx} = \frac{x+1}{y}$ $\frac{d^2y}{dx^2} = \frac{y^2 (x+1)^2}{y^3} = -\frac{1}{y^3}$ 28. $\frac{dy}{dx} = -\left(\frac{y}{x}\right)^{1/3}$ 30. $\frac{dy}{dx} = \frac{1}{y+1}$

- $\frac{d^2y}{dx^2} = \frac{x^{2/3} + y^{2/3}}{3x^{4/3}y^{1/3}} = \frac{1}{3x^{4/3}y^{1/3}} \qquad \frac{d^2y}{dx^2} = -\frac{1}{(v+1)^2}$
- **39.** $-\frac{1}{4}(1-x^{1/2})^{-1/2}x^{-1/2}$ **40.** $x^{-3/2}(2x^{-1/2}+1)^{-4/3}$
- **41.** $-\frac{9}{2}(\csc x)^{3/2} \cot x$
- 42. $\frac{5}{4}[\sin{(x+5)}]^{1/4}\cos{(x+5)}$