<u>Unit Four</u>: Chapter 5 The Periodic Table

Cannizzaro

•	Italian	chemist
---	---------	---------

•	Developed and proposed a	
	for accurately measuring the relative	of atoms
	()	

https://webspace.yale.edu/chem125/125/history99/6Stere

- Enabled chemists to agree on ________

Allowed chemists to search for ______among the elements

Berzelius

- Swedish chemist
- Introduced _______

http://www.chemheritage.org/Discover/Online-Resources/Chemistry-in-History/Themes/Electrochemistry/asset_upload_file417_61092_thumbnail.jpg

Forerunners to the Periodic Table

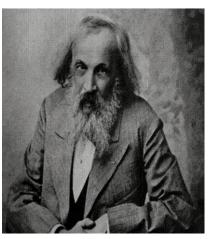
• Prout

0	Stated that _	was the		
		from which all other		
				

http://www.famouswhy.com/pictures/people/william_prout.jp

- Dobereiner _____
 - Certain groups of ______ when placed in order of increasing ______ showed similar _____ and the _____ element had properties ______ between the other

http://www.bpc.edu/mathscience/chemistry/images/johann_


- <u>Ex</u>.
- Newlands _____
 - o The ______ elements when placed in order of ______have ____

http://upload.wikimedia.org/wikipedia/commons/e/e1/J

Dmitri Mendeleev

- Russian chemist

http://famousscientist.net/wp-content/uploads/2012/05/dmitri-mendeleev.g

- _____(1869)
 - o ______ left in the table for _____
 - He predicted the ______ of these elements
 - _____ were discovered by 1886 and all

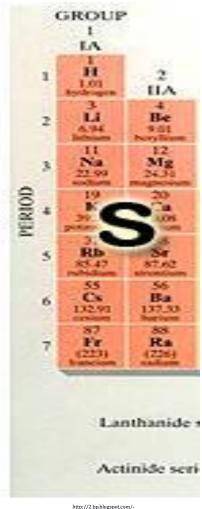
have properties almost ______ as Mendeleev predicted.

Tabelle II.

Reihen	Grappe I. R10	Gruppe II.	Gruppe III. — R*0°	Gruppe IV. RE¹ RO²	Gruppe V. AR ² R ² O°	Gruppe VI. RH ² RØ ²	Gruppe VII.	Gruppe VtfI.
1	H=1	."						
2	Li = 7	Bc = 9,4	B=11	C=12	N=14	0=16	F = 19	į
3	Na = 23	Mg = 24	Al=27,3	Si = 28	P = 31	8=32	Cl = 35,5	I
4	:K = 39	Ca = 40	-=44	''Γi == 48 	V=51	Cr == 52	Mn=55	Fe = 56, $Co = 59$, $Ni = 59$, $Cu = 63$.
5	(Cu=63)	$Z_{\rm n} = 65$	-=68	—=72	As=75	Se = 78	Br == 80	
6	Rb = 85	Sr=87	?Yt=88	Zr == 90	Nb == 94	Mo=96	-=100	Ru = 104, $Rh = 104$, $Pd = 106$, $Ag = 108$.
7	(Ag = 108)	Cd=112	In=113	8n=118	8b == 122	Te = 125	J = 127	:
8	Ce = 133	Ba = 137	9 Di \Longrightarrow 138	?Ce == 140	_	<u>.</u> –	: 	-
9	(-)	_	j –	_	_	· –	_	
10		-	?Er == 178	?La == 180	Ta == 182	W = 184	_	Os=195, Ir=197, Pt=198, Au=199.
11	(Au = 199)	Hg = 200	TI = 204	Pb == 207	Bi = 208	_	-	
12	i -	-		Th == 231	-	U = 240	_	
	1		:	!	t	ŧ	l	<u> </u>

http://upload.wikimedia.org/wikipedia/en/3/35/Mendeleev's_1871_periodic_table.jpg

Henry Moseley


•	Britis	n chemist	
•	The e	ements in the periodic table	
	bette	when they were arranged in increasing order according	
	to		http://cdn.timerime.com/cdn- 4/upload/restzed/77123/846760/resized.jmage2_7ddz 3ceb4fab3654036a35d8e1d5c.jpg
	0	Led to the modern definition of the	
		recognition that	
		is the basis for the o	f the periodic table.
Peri	odic I	aw	
•	The _	of the elements ()
	are a	() function	of their
		.	
	0		

Modern Periodic Table

	: an arrangeme	ent of the elements in order of their
	so that element	s with similar
fall in the same		
After Mendeleev:		
0		_
0		_
0		_
:	a horizontal	on the periodic table
o Corresponds to t	he	
o The	of each period is de	termined by the number of
	that can occupy the _	being filled in
that		
:	vertical	on the periodic table
o Based on the		of the elements,
the periodic table	e can be divided into	blocks.

s-Block elements

- Groups _____
- _____
- Valance electrons/Group configurations
 - o Group _____ = ____ valence electron
 - <u>Ex</u>. Li = _____
 - Group configuration = _____
 - _____
 - o Group _____ = ____ valence electrons
 - <u>Ex</u>. Be = _____
 - Group configuration = _____
 - _____

http://2.bp.blogspot.com/-Tir3kv3nkYk/UHXe2tL4LZI/AAAAAAAAAEs/OuiT06VxRNI/s1600/PeriodicTableOrbitals.jpj

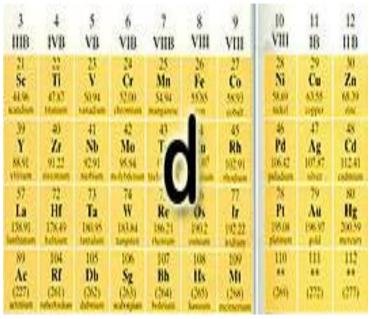
p-Block elements

- Groups _____
- ______the _____elements

together with the _____elements

- Valence electrons/Group configurations
 - Number of valence electrons = _____
 - o Group _____ = ____ valance electrons
 - <u>Ex</u>. B = _____
 - Group configuration = _____
 - o Group _____ = ____ valence electrons
 - <u>Ex</u>. C = _____
 - Group configuration = ______
 - http://2.bpblogspot.com/
 Continues with this pattern in Groups

 Tir3kv3nkYk/UHXe2tl.4LZI/AAAAAAAAEs/OutT06VxRNI/s1600/PeriodicTable0rbitals.jpg


d-Block elements

- Groups _____
- _____:

the d-block elements are _____

with typical _____

properties

13

B 10.81

Ga

In

114.82 indian

TI 354.38

IIIA IVA

C 12.01

11871

15

VA

7 N 1401 VIA

16,00

116

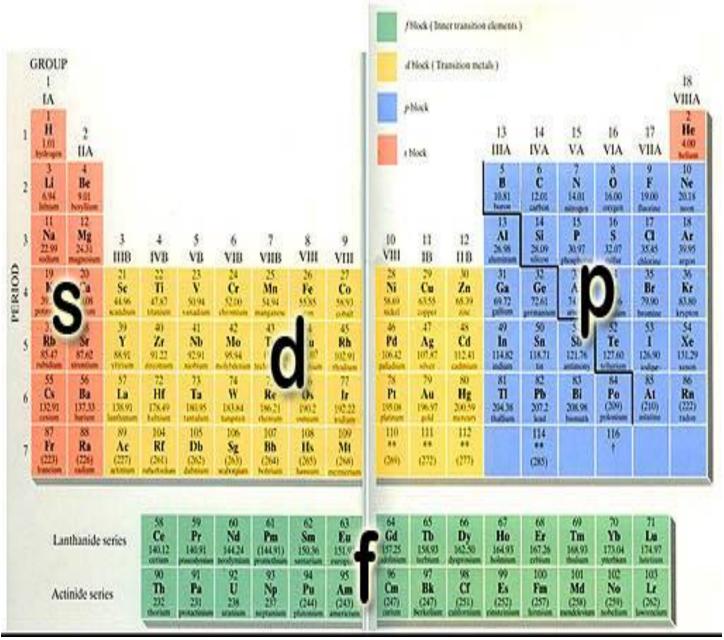
VIIA

19.00

35.85

Br

http://2.bp.blogspot.com/-Tir3kv3nkYk/UHXe2tL4LZI/AAAAAAAAAEs/OuiT06VxRNI/s1600/PeriodicTableOrbitals.jpg


VIIIA

Rn

 Group configurations 								
o Group								
■ <u>Ex</u> . Sc =								
 Group configuration 	on =			_				
o Group								
■ Ex. Zn =								
 Group configuration)n =			-				
o Sum of the outer a	ınd	electrons is	equal to	the		nun	nber	
f-Block elements								
• Located between Groups		3 9 0 Q	0 0	64 65	66 67 D: Us	(K (f)	70	1
in the	Lanthanide series	140,12 140,91 144,24 (144) other procleme bodystes point	9) 1936 1937 National emp	157.25 15(9) 1670am torbus à	N230 16191 repoint blesses	167.5 166.00 minus below	173.04 17 yarhan las	IA IV
periods	Actinide series	00 91 92 93 Th Pa U No 222 231 234 235	Pu Am	% 97 On Bk	CI E	100 101 Fin Md 0571 0590	No. 1	
•:		http://2.bp.blogspot.com/-Ti	ir3kv3nkYk/UHXe2tL4LZI/A.	AAAAAAAAEs/OuiT06VxF	RNI/s1600/PeriodicT	TableOrbitals.jpg	a social las	ik.
fill the sublevel								
0								
 Similar in reactivity to th 	ıe							

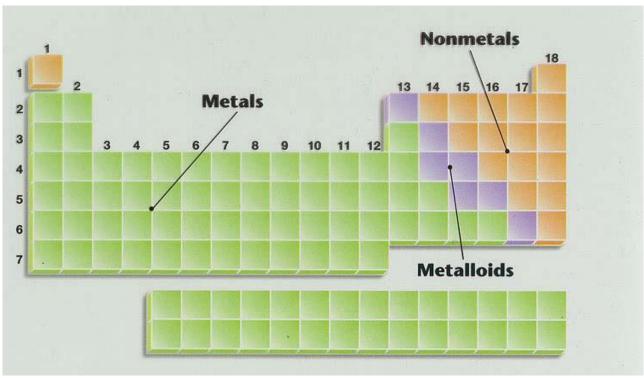
- ______: fill the______ sublevel
 - o All 14 of these elements are _____
 - o First four have been found ______ on earth
 - o Remaining ten are known only as ______

(or synthetic) elements

Identify the group #, period #, block, and element with the following valence electron/group configuration:

Configuration	Group #	Period #	Block	Element
1.				
2.				
3.				
4.				
5.				
6.				
<i>o.</i>				
7.				
8.				
9.				
<i>y</i> .				
10.				
11.				
12.				
14.				
13.				
14.				

Write the valence electron/group configuration for the following elements:


Element	Configuration
1.	
2.	
3.	
4.	
5.	
6.	
7.	
8.	
9.	
10.	
11.	
12.	
13.	
14.	

Periodic Trends

Elemental Properties and Patterns

A Different Type of Grouping

Metals, Nonmetals, Metalloids

http://www1.whsd.net/courses/J0078/Periodic_Table/periodic_table.JPG

There is a zi	g-zag line or		that divides tl	ne table.
• Metals are o	on the	_ of the line.		
• Nonmetals a	are on the	of the line.		
• Elements th	attl	he staircase are the	metalloids or s	emi-conductors.
• There is one	e important excepti	on:		
Metals				
• Metals are _			- 1	
			-	
• They are mo	ostly	_ at room temperat	ure.	SCIENCEPHOTOLINGA
• What is one	exception?			http://www.sciencephoto.com/

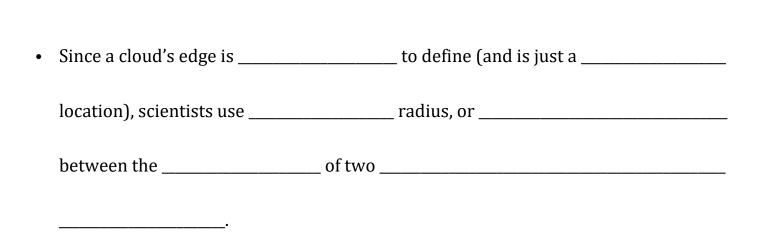
Nonmetals

Nonmetals are the ______.They are _______

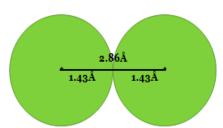
• Some are ______, but many are ______, and ______is

Metalloids

Metalloids have characteristics of ________



- They are ______.
- http://en.wikipedia.org/wiki/File:SiliconCroda.jp
- They are ______.


Periodic Trends

Elements do not have their	_ because of their	
on the periodic table, but rather both the		_and the
arise from the		of the
atom.		
Atomic Radius		

Radius is the _____

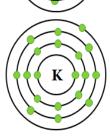
- Atomic radii are usually measured in ______ or _____.
 An ______ is _____ m.
- Two Br atoms bonded together are _____ angstroms
 apart. So, the atomic radius of each atom is _____ Å.

• Group 1:	
• H:	
• Li:	
• Na:	
• K:	
 The atomic radius 	going down a vertical column (group)
With each step	a group, a new
to the	in order to hold the
, making	g the atoms
• Period trend:	
• Period 2:	
• Li:	
• Be:	
• B:	
• C:	

• Group trend:

The size of an ator	n generally	as you go acr	oss a period
---------------------	-------------	---------------	--------------

- The effect is that the _____has a ____on the _____.
- The nucleus is more _____ and the electron cloud is more
- The ______, making atoms _____ as we move from left to right across a period.
 - MORE ______!


http://www.crystalmaker.com/support/tutorials/crystalmaker/atomic-radii/resources/VFI_Atomic_Radii_sm.jp

Review!

do atoms get SMALLER as you move RIGHT within the same period on the ic table?
lo atoms get SMALLER as you move RIGHT within the same period on the ic table?
ic table?
ic table?
ic table?
ic table?
ic table?
ic table?
ic table?
ge each group from smallest to largest:
Mg, S, Si
As, N, P
As, Sb, Se
4

Shielding What is happening to the shielding as you

- go across the period?
- What is happening to the shielding as you go down a group?

Group trend:

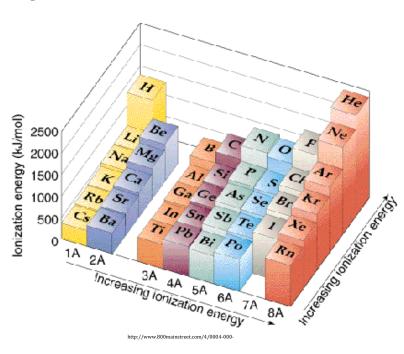
- The shielding effect ______ as you go down a group.
 - As more _____ are added to atoms, the _____ layers of electrons _____ the _____ electrons from the
- The ______ electrons is _____, and so the outer electrons are _____.

□ The s	hielding effect		as you	go across a period
	There	more energy	levels being added to	atoms within the
	p	eriod.		
•	The number o	f electrons in the		shielding those
	on the	does not cha	nge; therefore,	
ization Ene	rgy		om requires	
of a	·			
		" or		
The number	r of	and	is no longer	
For example	e:			
<u> </u>				
			-	

• Period Trend:

can be defined as	
, therefor	e, is the
required to one electron fr	om a of an
element.	
 Measured in 	
Ionization energy is always	, that is, energy is
to the to remove the	
Group trend:	
 The ionization energy 	as you move down a group
Electrons removed in	are
from the nucl	eus.
Therefore, there are	_ electrons between the inner and outer
electrons	them from the pull.
 In general, the the atom 	om, the electrons are to
remove	

• Perio	d tre	nd:		
	The i	onization energy _		_ as you move across a period
	•	There is	in	, therefore there is
			in shielding.	
	•	As we know, the _		across a period
		(MORE	, MORE)	. The electrons are being
			to the	and as a result are more
		t	o remove.	
• Facto	rs affe	ecting the Ionizatio	n Energy:	
	1			_
	•	The	the nuclear charge, tl	ne the IE.
	2			_


• The _____ the shielding effect, the _____ the IE.

• The _____ the distance between the nucleus and the outer

electrons of an atom, the _____ the IE.

· 4. _____

requires additional ______ to be removed.

Electron Affinity

Most atoms _____ when they _____ electrons.

- The number of _____ and ____ is no _____.
- For example:

· _____

is the energy change that occurs when an			
is	by a	·	
	Measured in		
Elect	ron affinity is usually	, that is, energy is	
from	the atom to an electron	n; but	
	It is if there is an	or	
	for an to o	occupy.	
	If there are	, a or	
	must be	, making its process	
	·		
	This is true for the		
Grou	ıp trend:		
	The trend for electron affinity down a gi	roun is	
	as that of	-	
	As a general rule, the electron affinity	as you	
	move down a group.		
Peri	od trend:		
_	The electron affinity	as you move across a period.	

Review!

	own words, explain the shielding effect including the trends.
WHY	does the Ionization Energy decrease as you go down a group?
WHY	does the Ionization Energy increase as you go across a period?
	do the trends (both group and period) for Ionization Energy compare to the mic radius?

Metallic Character

•	A rel	ative measure of how easily atoms	up electrons
		The "" it is to remove an electron, the more	e ""
		an atom is.	
•		atoms have the metallic characte	er
		Electrons are further from the nucleus and are therefore	
		·	
•	Grou	p trend	
		The metallic character of an atom	as you go from top to
		bottom down a group on the periodic table.	
•	Peri	od trend	
		The metallic character of an atom	_ as you go from left
		to right across a period on the periodic table.	

Electron egativity

•	A measure of the
•	Linus Pauling, an American chemist, Authorites 10-12 Authorites 1
	developed an arbitrary scale that ranges Copyright 2000 John Wiley and Some, Inc.
	 The units of electronegativity are
	, the most electronegative element has a value of
•	Group trend
	Going from top to bottom down a group, the electronegativity
	• The, however there is another
	energy level added which means the

and the electrons are ______.

	electronegativity value is	
 Period tre 	nd	
- Goin	g from left to right across a period, t	he electronegativity
•	There is	because the number of inner
	electrons remains the same.	
	The	which means there is a
	from the r	nucleus.
•	Because the electrons are closer to	the nucleus, it is for
	an electron to be pulled in.	
•	are electron	_ and have
electroneg	ativity values.	
•	are electron	_ and have
electroneg	ativity values.	

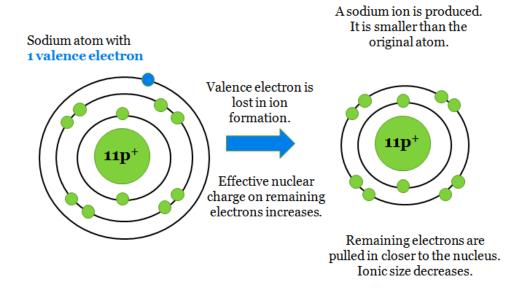
• It is therefore ______ to attract an electron and the

• What	t about the?	
	Some noble gases are to form compounds and therefore have	e
	When they form compounds, their electronegativity values are	
Review!		
• How	is electronegativity different from electron affinity?	
. 14/111	I does the electronegativity degrees as you so down a group?	
• WHY	I does the electronegativity decrease as you go down a group?	

	<u> </u>			
Orray	wall Dag stivity			
Jve	rall Reactivity			
•	Combines all of the p	revious trends		
•	But, metals and nonn	netals must be considered .	······································	
•	The		are the	since
	they are the best elec	etron		
•	The		are the	_ ones,
	the best electron	·		
Гhе	Octet Rule			
•	The "" of n	nost atoms (except) is to have an	
	or group ofe	electrons in their		

• WHY does the electronegativity increase as you go across a period?

• To	o do this, they either		electrons.	
• _	general	llyel	ectrons,	
th	em from other atoms.			
• At	toms that have		_ electrons are call	led
Ions				
• W	hen an atom	an electron, it beco	omes	charged ()
	 It has more 	than electro	ns.	
	 It is called a 	·		
• W	hen an atom	_ an electron, it beco	mes	charged ().
	 It has more 	than p	orotons.	
	 It is called an 			
Ionic R	Radius			
• Ca	ation trends			
	 Cations are always 	5	$_{ extstyle }$ than the neutral a	atom from which
	they were formed.			


• Removal of the highest-energy level electrons results in a

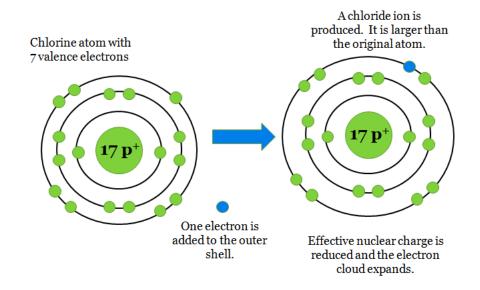
_____ electron cloud.

Furthermore, the ________

during ionization.

Cation formation

Anion trends


- Anions are always ______ than the neutral atom from which they were formed.
 - Electrons are ______ to the outer energy level.

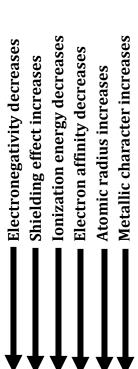
•	The of the nucleus remains
	, so the electrons are
	to the nucleus as they were before.

The electron cloud also spreads out because of _________

between increased number of electrons.

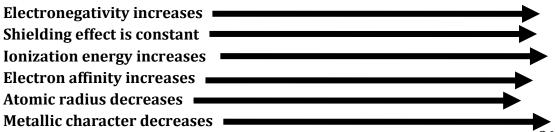
• Anion formation

Periodic Trends Review


Atomic Radius:	Across a p	Across a period:						_ Down a group:				
							_	\sqcup			\perp	
		+	-	\vdash	+	+	+	\vdash	-	+	+	
		++	+		+	+	+	\vdash	-	+	+	
					Т				Т			
							-	\top	+			

hielding Effect:	Across a period:	Down a group:
1		
l		
nization Energy	: Across a period:	Down a group:
	_	
1		
l		
ectron Affinity:	Across a period:	Down a group:
_	•	
		
	 	
	 	+ + + + + + + + + + + + + + + + + + + +
[
ľ		

Metallic Character:	Across a period:	Down a group:	
Electronegativity:	Across a period:	Down a group:	
Overall Reactivity:	Depends on		


Summary of Periodic Trends

The Periodic Table of the Elements

	_																
1																	2
H																	He
Hydrogen																	Helium
1.00794	4											5	6	7	8	9	4.003
Li												B	Č	N	0	F	Ne
Lithium	Be Beryllium											D Boron	Carbon		Oxygen	Fluorine	
6.941	9.012182											10.811	12.0107	Nitrogen 14.00674	15.9994	18.9984032	Neon 20.1797
11	12											13	14	15	16	17	18
Na	Mg											Al	Si	P	S	Cl	Ar
Sodium	Magnesium											Aluminum	Silicon	Phosphorus	Sulfur	Chlorine	Argon
22.989770	24.3050	21	22	22	2.4	25	26	07	20	20	20	26.981538	28.0855	30.973761	32.066	35.4527	39.948
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Potassium 39,0983	Calcium 40,078	Scandium 44,955910	Titanium 47.867	Vanadium 50.9415	Chromium 51,9961	Manganese 54,938049	Iron 55.845	Cobalt 58.933200	Nickel 58.6934	Copper 63,546	Zinc 65.39	Gallium 69.723	Germanium 72.61	Arsenic 74.92160	Selenium 78.96	Bromine 79,904	Krypton 83.80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	Tc		Rh	Pd		Cd	_	Sn	Sb	Te	T	Xe
Rubidium	Strontium	I Yttrium	Zirconium	IND Niobium	All Molybdenum	Technetium	Ru Ruthenium	Rhodium	Palladium	Ag Silver	Cadmium	In Indium	SII Tin	Antimony	Tellurium	I lodine	Ae Xenon
85.4678	87.62	88.90585	91.224	92.90638	95.94	(98)	101.07	102.90550	106.42	107.8682	112.411	114.818	118.710	121.760	127.60	126.90447	131.29
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	La	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn
Cesium	Barium	Lanthanum	Hafnium	Tantalum	Tungsten	Rhenium	Osmium	Iridium	Platinum	Gold	Mercury	Thallium	Lead	Bismuth	Polonium	Astatine	Radon
132.90545	137.327	138.9055	178.49	180.9479	183.84	186.207	190.23	192.217	195.078	196.96655	200.59	204.3833	207.2	208.98038	(209)	(210)	(222)
87	88	89	104	105	106	107	108	109	110	111	112	113	114				
Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt									
Francium (222)	Radium (226)	Actinium (227)	Rutherfordium (261)	Dubnium (262)	Seaborgium	Bohrium (262)	Hassium (265)	Meitnerium (266)	(260)	(272)	(277)						
(223)	(226)	(227)	(261)	(262)	(263)	(262)	(265)	(266)	(269)	(272)	(277)						

58	59	60	61	62	63	64	65	66	67	68	69	70	71
Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
Cerium	Praseodymium	Neodymium	Promethium	Samarium	Europium	Gadolinium	Terbium	Dysprosium	Holmium	Erbium	Thulium	Ytterbium	Lutetium
140.116	140.90765	144.24	(145)	150.36	151.964	157.25	158.92534	162.50	164.93032	167.26	168.93421	173.04	174.967
90	91	92	93	94	95	96	97	98	99	100	101	102	103
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
Thorium	Protactinium	Uranium	Neptunium	Plutonium	Americium	Curium	Berkelium	Californium	Einsteinium	Fermium	Mendelevium	Nobelium	Lawrencium
232.0381	231.03588	238.0289	(237)	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(262)

Periodic Trends Review

Using a periodic table to decide, answer each of the following.

1. Which of the following has the $\underline{\textbf{largest}}$ 1st ionization energy?	
a. Strontium, silver, tin, or iodine	
b. Bismuth, arsenic, or nitrogen	
2. Which of the following has the <u>largest</u> electron affinity?	
a. Lead, tin, carbon, or silicon	
b. Cesium, tungsten, or bismuth	
3. Which of the following has the <u>lowest</u> electronegativity?	
a. Beryllium, barium, calcium, or magnesium	
b. Sulfur, magnesium, or silicon	
4. Which of the following has the <u>largest</u> atomic radius?	
a. Fluorine, oxygen, lithium, or beryllium	
b. Aluminum, gallium, or boron	

Э.	which of the following has the lowest 1st ionization energy?	
	a. Magnesium or sodium	
	b. Bromine or chlorine	
6.	Which of the following has the lowest ionic radius?	
	a. Sulfur or chlorine	
	b. Potassium or rubidium	
	c. Nitrogen or phosphorus	
7.	Which of the following has the highest shielding effect?	
	a. Xenon, neon, or argon	
	b. Silicon, sulfur, phosphorus, or aluminum	
8.	Which of the following has the lowest atomic radii?	
	a. Neon, radon, or argon	
	b. Chlorine, sodium, or silicon	

Q	Which	of the	following	hac th	a lawast	alactron	affinity?
9.	VVIIICII	or the	IOHOWIHE	g nas ui	e <u>iowest</u>	election	anning:

a. Rubidium or sodium

b. Sulfur or oxygen

10. Circle the **more reactive** of the pair.

a. K, Ga

b. Ne, Br

c. Mg, Ba d. F, Br

e. S, Ar f. N, F

11. Circle the **larger** atom.

a. K, Ga

b. Rb, Si

c. Mg,

Ba d. P, Ra

12. Circle the <u>larger</u> of the pair.

a. Li, Li⁺

b. B, B+3 c. F, F- d. P, P-3

13. Circle the **more** electronegative element of the pair.

a. K, Se

b. N, As c. F, Ne d. Se,

Ne

14.	Circ	le the	e eleme	ent with	the g	<u>reater</u>	ioniz	zatior	ı en	iergy.	
	a.	Rb,	I	ł	o. N,	Sb		c. N,	0)	
15.	Circ	le the	e eleme	ent with	a <u>mo</u>	re neg	ative	<u>e</u> elec	tror	n affinity.	
	a.	C,	F	ł	o. C,	Ne					
16.	Wha	at is t	he tren	ıd in ato	omic r	adius n	novir	ng dov	wn a	a group? Explain wh	ny this is so.
_											
_											
17.	Wha	at is t	he tren	ıd in ato	omic r	adius n	novir	ng left	tin	a period? Explain w	hy this is so.
_											
_											
_											

18.	Are anions larger or smaller than their respective atoms? Explain why this is so.
<u>-</u>	
_	
-	
19.	Are cations larger or smaller than their respective atoms? Explain why this is so.
_	
_	
_	
20.	What are the four factors affecting the Ionization Energy?
-	
-	
-	

Identify the group #, period #, block, and element with the following valence electron/group configuration:

Configuration	Group #	Period #	Block	Element
1.				
2.				
3.				
4.				
5.				
6.				
7.				
8.				
9.				
10.				

Write the valence electron/group configuration for the following elements:

Element	Configuration
1.	
2.	
3.	
4.	
5.	
6.	
7.	
8.	
9.	
10.	

Exam Date:	

• The Periodic Law (Chapter 5)

- ✓ Periodic table (Canizzaro/Berzelius/Prout/Dobereiner/Newlands/Mendeleev/Moseley)
- ✓ Periodic law / groups / periods / blocks
- ✓ Valence electron / group configuration
- ✓ Metals / Nonmetals / Metalloids
- ✓ Periodicity for atomic radius / ionic radius / ionization energy / electron affinity / electronegativity / shielding effect / metallic character / overall reactivity