Chapter 4 Section 2 Trigonometric Functions: The Unit Circle

Definitions of Trigonometric Functions

Let t be a real number and let (x, y) be a point on the unit circle corresponding to t.

$$\sin t = y \qquad \cos t = x \qquad \tan t = \frac{y}{x}, x \neq 0$$

$$\csc t = \frac{1}{y}, y \neq 0 \qquad \sec t = \frac{1}{x}, x \neq 0$$

$$\cot t = \frac{x}{y}, y \neq 0$$

The Unit Circle

The unit circle is given by $x^2 + y^2 = 1$. The real number line is wrapped around the unit circle so that each real number t corresponds to a point (x, y) on the circle. Also, each real number t corresponds to a central angle θ (in standard position) whose radian measure is t. The real number t is the length of the arc intercepted by the angle θ , given in radians.

Definition of Periodic Function

A function f is periodic if there exists a positive real number c such that

$$f(t+c) = f(t)$$

for all t in the domain of $\ f$. The smallest number $\ c$ for which $\ f$ is periodic is called the period of $\ f$.

Since $\sin(t + 2\pi n) = \sin(t)$ and $\cos(t + 2\pi n) = s\cos(t)$ for any integer n and real number t. Sine and cosine are periodic functions.

Even and Odd Trigonometric Functions

The cosine and secant functions are even.

$$\cos(-t) = \cos t$$
 $\sec(-t) = \sec t$

The sine, cosecant, tangent, and cotangent functions are *odd*.

$$\sin(-t) = -\sin t$$
 $\csc(-t) = -\csc t$
 $\tan(-t) = -\tan t$ $\cot(-t) = -\cot t$