Study Guide and Intervention $\mathbf{4} - \mathbf{3}$

Writing Equations in Point-Slope Form

Point-Slope Form

 $y - y_1 = m(x - x_1)$, where (x_1, y_1) is a given point on a nonvertical line Point-Slope Form and *m* is the slope of the line

Example 1 Write an equation in point-slope form for the line that passes through (6, 1) with a slope of $-\frac{5}{2}$. $y - y_1 = m(x - x_1)$ Point-slope form $y - 1 = -\frac{5}{2}(x - 6)$ $m = -\frac{5}{2}; (x_1, y_1) = (6, 1)$

Therefore, the equation is $y - 1 = -\frac{5}{2}(x - 6)$.

Example 2 Write an equation in point-slope form for a horizontal line that passes through (4, -1).

 $y - y_1 = m(x - x_1)$ Point-slope form y - (-1) = 0(x - 4) $m = 0; (x_1, y_1) = (4, -1)$ y + 1 = 0Simplify. Therefore, the equation is y + 1 = 0.

Exercises

Write an equation in point-slope form for the line that passes through each point with the given slope.

- **10.** Write an equation in point-slope form for a horizontal line that passes through (4, -2).
- **11.** Write an equation in point-slope form for a horizontal line that passes through (-5, 6).
- **12.** Write an equation in point-slope form for a horizontal line that passes through (5, 0).

Lesson 4-3

Study Guide and Intervention (continued) 4 - 3

Writing Equations in Point-Slope Form

Forms of Linear Equations

Slope-Intercept Form	y = mx + b	m = slope; $b = y$ -intercept
Point-Slope Form	$y - y_1 = m(x - x_1)$	$m =$ slope; (x_1, y_1) is a given point
Standard Form	Ax + By = C	A and B are not both zero. Usually A is nonnegative and A, B, and C are integers whose greatest common factor is 1.

Write $y + 5 = \frac{2}{3}(x - 6)$ in Example 1 standard form.

$y + 5 = \frac{2}{3}(x - 6)$	Original equation
$3(y + 5) = 3\left(\frac{2}{3}\right)(x - 6)$	Multiply each side by 3.
3y + 15 = 2(x - 6)	Distributive Property
3y + 15 = 2x - 12	Distributive Property
3y = 2x - 27	Subtract 15 from each side.
-2x + 3y = -27	Add $-2x$ to each side.
2x - 3y = 27	Multiply each side by -1 .

Example 2 Write
$$y - 2 = -\frac{1}{4}(x - 8)$$
 in
slope-intercept form.
 $y - 2 = -\frac{1}{4}(x - 8)$ Original equation
 $y - 2 = -\frac{1}{4}x + 2$ Distributive Property
 $y = -\frac{1}{4}x + 4$ Add 2 to each side.
Therefore, the slope-intercept form of the
equation is $y = -\frac{1}{4}x + 4$.

Therefore, the standard form of the equation is 2x - 3y = 27.

Exercises

Write each equation in standard form.

1. y + 2 = -3(x - 1)	2. $y - 1 = -\frac{1}{3}(x - 6)$	3. $y + 2 = \frac{2}{3}(x - 9)$
4. $y + 3 = -(x - 5)$	5. $y - 4 = \frac{5}{3}(x + 3)$	6. $y + 4 = -\frac{2}{5}(x - 1)$

Write each equation in slope-intercept form.

7.
$$y + 4 = 4(x - 2)$$

8. $y - 5 = \frac{1}{3}(x - 6)$
9. $y - 8 = -\frac{1}{4}(x + 8)$

10. $y - 6 = 3\left(x - \frac{1}{3}\right)$ **11.** y + 4 = -2(x + 5) **12.** $y + \frac{5}{3} = \frac{1}{2}(x - 2)$