## Dividing Rational Expressions Guide

- Flip the numerator and denominator of THE SECOND of the fractions, then switch the division
   (÷) sign to a multiplication (•) sign
- 2 Factor out each numerator and each denominator, if possible (start by looking for a GCF to take out)
- (3) "Set up" to multiply by putting each item in the numerator and each item in the denominator next to one another to be multiplied, and then cancel out common terms/factors
- (4) Multiply what's left in the numerator, and multiply what's left in the denominator, if possible.
- (5) Take out (factor out) any remaining common terms in the numerator and denominator *Example:*

Find the quotient: 
$$\frac{2x^2 + 2x}{4x} \div \frac{x+1}{3x^2}$$

Flip the numerator and denominator of THE SECOND fraction, then change the ÷ sign to a
 sign

Flipping the second fraction and changing the division sign to a multiplication sign, we now

have: 
$$\frac{2x^2 + 2x}{4x} \bullet \frac{3x^2}{x+1}$$

(2) Factor out *each* numerator and each denominator, if possible (start by looking for a GCF to take out)

The only thing we are able to factor is  $2x^2 + 2x \rightarrow$  since the GCF is 2x, we get 2x(x+1)

So, we now have: 
$$\frac{2x(x+1)}{4x} \bullet \frac{3x^2}{x+1}$$

(3) "Set up" to multiply by putting each item in the numerator and each item in the denominator next to one another to be multiplied, and then cancel out common terms/factors

Set up: Cancel out common factors/terms:

Set up:  

$$\frac{2x(x+1)(3x^2)}{4x(x+1)}$$

Both the numerator and the denominator have the

factor (x + 1), so we can cancel each:

$$\frac{2x(x+1)(3x^2)}{4x(x+1)}$$

Multiply what's left in the numerator, and multiply what's left in the denominator, if possible.

We are left with  $\frac{2x(3x^2)}{4x}$  and we can multiply the terms in the numerator to get  $\frac{6x^3}{4x}$ 

Take out (factor out) any remaining common terms in the numerator and denominator. The GCF of 6 and 4 is 2, and the GCF of the x's is just x, so the GCF of the numerator and denominator is  $2x \rightarrow take a 2x$  out of the numerator and denominator and we're left with:  $3x^2$ 

with: 
$$\frac{3x^2}{2}$$

| Find the quotient: $\frac{8x-16}{5x^2} \div \frac{4x-8}{10x}$                                                 |
|---------------------------------------------------------------------------------------------------------------|
| 1 Flip the numerator and denominator of THE SECOND fraction, then change the ÷ sign to a • sign               |
|                                                                                                               |
|                                                                                                               |
| 2 Factor out <i>each</i> numerator and each denominator, if possible (start by looking for a GCF to take out) |
|                                                                                                               |
| ③ "Set up" to multiply by putting each item in the numerator and each item in the denominator next to         |
| one another to be multiplied, and then cancel out common terms/factors                                        |
|                                                                                                               |
| 4 Multiply what's left in the numerator, and multiply what's left in the denominator, if possible.            |
|                                                                                                               |
| Take out (factor out) any remaining common terms in the numerator and denominator                             |
|                                                                                                               |
|                                                                                                               |

|                                | Find the quotient:  | $\frac{2x+2}{3x^2} \div$ | $\frac{x+1}{4}$                       |
|--------------------------------|---------------------|--------------------------|---------------------------------------|
| 1 Flip the numerator and denor | ninator of THE SECC | ND fraction              | n, then change the ÷ sign to a • sign |

- 2 Factor out *each* numerator and each denominator, if possible (start by looking for a GCF to take out)
- (3) "Set up" to multiply by putting each item in the numerator and each item in the denominator next to one another to be multiplied, and then cancel out common terms/factors
- 4 Multiply what's left in the numerator, and multiply what's left in the denominator, if possible.
- 5 Take out (factor out) any remaining common terms in the numerator and denominator

| Find the quotient: | 4x-24.    | 3x - 18     |
|--------------------|-----------|-------------|
|                    | ${3x+15}$ | <i>x</i> +5 |

| 1 | ) Flip the numerator and denominator of THE SECOND fraction, then change the $\div$ sign to a $ullet$ sigr |
|---|------------------------------------------------------------------------------------------------------------|
|---|------------------------------------------------------------------------------------------------------------|



- (3) "Set up" to multiply by putting each item in the numerator and each item in the denominator next to one another to be multiplied, and then cancel out common terms/factors
- 4 Multiply what's left in the numerator, and multiply what's left in the denominator, if possible.
- (5) Take out (factor out) any remaining common terms in the numerator and denominator

Find the quotient: 
$$\frac{x^2 + 4x}{4x} \div \frac{x^2 + x - 12}{x - 3}$$

1 Flip the numerator and denominator of THE SECOND fraction, then change the ÷ sign to a • sign

- 2 Factor out *each* numerator and each denominator, if possible (start by looking for a GCF to take out)
- ③ "Set up" to multiply by putting each item in the numerator and each item in the denominator next to one another to be multiplied, and then cancel out common terms/factors
- 4 Multiply what's left in the numerator, and multiply what's left in the denominator, if possible.
- (5) Take out (factor out) any remaining common terms in the numerator and denominator

Find the quotient: 
$$\frac{x^2 - 2x - 48}{4x^2 + 24x} \div \frac{x - 8}{8x + 24}$$

1 Flip the numerator and denominator of THE SECOND fraction, then change the ÷ sign to a • sign

- 2 Factor out *each* numerator and each denominator, if possible (start by looking for a GCF to take out)
- ③ "Set up" to multiply by putting each item in the numerator and each item in the denominator next to one another to be multiplied, and then cancel out common terms/factors
- 4 Multiply what's left in the numerator, and multiply what's left in the denominator, if possible.
- (5) Take out (factor out) any remaining common terms in the numerator and denominator

| Find the quotient: $\frac{2x-14}{x^2-4x-21} \div (x+3)$                                                                                                                      |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ① Flip the numerator and denominator of THE SECOND fraction, then change the ÷ sign to a • sign                                                                              |
| (2) Factor out <i>each</i> numerator and each denominator, if possible (start by looking for a GCF to take out)                                                              |
| ③ "Set up" to multiply by putting each item in the numerator and each item in the denominator next to one another to be multiplied, and then cancel out common terms/factors |
| 4 Multiply what's left in the numerator, and multiply what's left in the denominator, if possible.                                                                           |
| 5 Take out (factor out) any remaining common terms in the numerator and denominator                                                                                          |

| F: 1.1             | $4x^2$ |   | 8 <i>x</i> |
|--------------------|--------|---|------------|
| Find the quotient: | 5      | · | 10         |

1 Flip the numerator and denominator of THE SECOND fraction, then change the ÷ sign to a • sign

- 2 Factor out *each* numerator and each denominator, if possible (start by looking for a GCF to take out)
- (3) "Set up" to multiply by putting each item in the numerator and each item in the denominator next to one another to be multiplied, and then cancel out common terms/factors
- 4 Multiply what's left in the numerator, and multiply what's left in the denominator, if possible.
- (5) Take out (factor out) any remaining common terms in the numerator and denominator

| $8x-16 \cdot 4x-8$                                                                                 |         |
|----------------------------------------------------------------------------------------------------|---------|
| Find the quotient: $\frac{8x-16}{5x^2} \div \frac{4x-8}{10x}$                                      |         |
|                                                                                                    |         |
| 1 Flip the numerator and denominator of THE SECOND fraction, then change the ÷ sign to a • sign    | gn      |
|                                                                                                    |         |
|                                                                                                    |         |
|                                                                                                    |         |
|                                                                                                    |         |
|                                                                                                    |         |
| 2 Factor out each numerator and each denominator, if possible (start by looking for a GCF to ta    | ake     |
| out)                                                                                               |         |
|                                                                                                    |         |
|                                                                                                    |         |
|                                                                                                    |         |
|                                                                                                    |         |
| ③ "Set up" to multiply by putting each item in the numerator and each item in the denominator      | next to |
| one another to be multiplied, and then cancel out common terms/factors                             |         |
|                                                                                                    |         |
|                                                                                                    |         |
|                                                                                                    |         |
| 4 Multiply what's left in the numerator, and multiply what's left in the denominator, if possible. |         |
|                                                                                                    |         |
|                                                                                                    |         |
|                                                                                                    |         |
|                                                                                                    |         |
| (Table 3.14 /forton 3.14) and marking a common towns in the market and demanding to a              |         |
| (5) Take out (factor out) any remaining common terms in the numerator and denominator              |         |
|                                                                                                    |         |
|                                                                                                    |         |
|                                                                                                    |         |
|                                                                                                    |         |